Механизмы фоторецепции
которые настолько эффективны, что оказались приспособленными для использования самыми разнообразным» клетками и организмами. Таковы по своей природе цикл Креб-са для энергетического метаболизма,, комплекс актин — миозин для мышечного сокращения и синапс для. нервной, передачи. То же самое применимо и к фоторецепции. Мы уже отмечали, что излучения узкой полосы видимого спектра имеют энергию, как раз достаточную для поглощения молекулами, но не такую большую, чтобы их разрушить. Теперь нужна молекула, способная переводить световую энергию в максимально возможное количество свободной химической энергии. Наиболее эффективно это делают молекулы, принадлежащие к классу так называемых каротиноидов, представителем которого является витамин А.В клетках, специализированных для фоторецепции, мы обнаруживаем еще одно проявление универсальности: у большинства видов фоторецепторная часть клетки состоит из тонких отростков типа волосков. В некоторых случаях это реснички или модификации ресничек; в других случаях это микроворсинки или их модификации. Р. Икин (R. Eakin) из Калифорнийского университета в Беркли сделал обзор вариаций этих структур у разных видов и высказал предположение о существовании двух главных линий эволюции фоторецепторов. Как показано на обобщающей схеме. Имеется линия плоские черви — кольчатые черви — членистоногие, в которой для размещения родопсина и фоторецепции используются микроворсинки, собранные в рабдом, и линия кишечнополостные — иглокожие — хордовые, в которой для этой цели используются модифицированные реснички. Хотя в этих линиях встречаются исключения (как всегда в биологии), такая схема дает хорошее представление о разнообразии рецепторов; кроме того, она демонстрирует важность волосовидных отростков для сенсорного преобразования. Икин предположил, что мембраны ресничек и микроворсинок обеспечивают плоскостное размещение молекул фотопигментов для наиболее эффективного поглощения фотонов.
Абсолютная чувствительность глаза .Жизненный опыт убеждает, сколь чувствителен глаз человека к свету. Астрономы давно научились краешком глаза (как мы теперь понимаем, периферическим палочковым зрением) различать на ночном небе даже самые слабые звезды. Однако необходимы были конкретные знания о минимальной энергии света или числа квантов, способных создать субъективное ощущение световой вспышки. От этого прямо зависит понимание процессов преобразования светового сигнала в зрительный, т.е. понимание молекулярных механизмов фототрансдукции. Как мы теперь знаем, в эксперименте по определению порога чувствительности зрительной системы необходимы следующие условия: предварительная темновая адаптация глаза наблюдателя; фиксация пятна света на периферии сетчатки, где находятся более чувствительные к свету палочки (сумеречное зрение); достаточно маленькое световое пятно, падающее на сетчатку глаза, порядка 10 или менее угловых минут; кратковременная (~1 мс) световая вспышка; определенная длина волны света, соответствующая максимуму спектральной чувствительности палочкового зрения (около 510 нм).
Острота зрения — максимальная способность зрительной системы различать отдельные объекты. Ее определяют по наименьшему расстоянию между двумя точками, которые возможно различить, т.е. видеть отдельно, а не слитно. За нормальную остроту зрения (которая обозначается единицей) принимается 1 угловая минута. Острота зрения зависит от места проекции изображения на сетчатки. При проекции изображения в область желтого пятна (колбочковый аппарат) острота зрения значительно выше, чем при проекции изображения на периферию сетчатки (палочковый аппарат). Острота зрения зависит от степени освещенности (в сумерках она ниже, а на свету выше), от физического контраста (чем больше физический контраст, тем выше острота зрения), а так же от уровня эмоционального напряжения (в зависимости от психофизиологических характеристик личности она может быть либо выше, либо ниже) и функционального состояния человека (при утомлении острота зрения падает).
Спектральная чувствительность приёмника излучения, отношение величины, характеризующей уровень реакции приёмника, к потоку энергии монохроматического излучения, вызывающего эту реакцию (см. Монохроматический свет). Различают абсолютную Спектральная чувствительность, выражаемую в именованных единицах (например, a/вm, если реакция приёмника измеряется в амперах), и безразмерную относительную Спектральная чувствительность — отношение Спектральная чувствительность при данной длине волны излучения к максимальному значению Спектральная чувствительность или к Спектральная чувствительность при некоторой др. длине волны. Спектральная чувствительность глаза человека — то же, что и спектральная световая эффективность излучения (видность). О Спектральная чувствительность фотоматериалов см. в ст. Сенсибилизация оптическая, Сенситометрия.
Восприятие цвета человеком. Принято считать, что цвет определяется длиной электро-магнитной волны, а конкретный (например синий) цвет это всего лишь наше представление о нем. Это представление формируется в результате реакции человеческой системы визуального восприятия на длину волны.
Цвет - впечатление, которое оказывают на орган зрения человека электро-магнитные волны разной длины. Цвет - информация, закодированная в длине электро-магнитных волн. Для нормального восприятия этих волн человеческий глаз преобразует их в три основных цвета.
Мозг человека разделяет видимый цветовой спектр на три части: красную, зеленую, синюю (цветовая модель RGB). Это значит, что все остальные цвета, воспринимаемые человеком, - плод создания (смешения) этих трех цветов.
Дальтони́зм, цветовая слепота — наследственная, реже приобретённая особенность зрения человека и приматов, выражающаяся в неспособности различать один или несколько цветов. Названа в честь Джона Дальтона, который впервые описал один из видов цветовой слепоты на основании собственных ощущений, в 1794 году.У человека в центральной части сетчатки расположены цветочувствительные рецепторы — нервные клетки, которые называются колбочки. Каждый из трёх видов колбочек имеет свой тип цветочувствительного пигмента белкового происхождения. Один тип пигмента чувствителен к красному цвету с максимумом 552—557 нм, другой — к зелёному (максимум около 530 нм), третий — к синему (426 нм). Люди с нормальным цветным зрением имеют в колбочках все три пигмента (красный, зелёный и синий) в необходимом количестве. Их называют трихроматами (от др.-греч. χρῶμα — цвет).
Передача дальтонизма по наследству связана с X-хромосомой и практически всегда передаётся от матери-носителя гена к сыну, в результате чего в двадцать раз чаще проявляется у мужчин, имеющих набор половых хромосом XY.
Устройство микроскопа. Принцип работы с микроскопом. Работа с микроскопом. Рассмотрим устройство типичного биологического микроскопа. Штативная подставка выполняется в виде тяжелой отливки, обычно подковообразной формы. К ней на шарнире прикреплен тубусодержатель, несущий все остальные части микроскопа. С помощью тубуса, в который вмонтированы линзовые системы, можно перемещать их относительно образца для фокусировки. На нижнем конце тубуса расположен объектив. Как правило, микроскоп снабжен несколькими объективами разного увеличения на револьверной головке, которая позволяет устанавливать их в рабочее положение на оптической оси. При исследовании образца оператор обычно начинает с объектива, который имеет наименьшее увеличение и наиболее широкое поле зрения, находит интересующие его детали, после чего рассматривает их, пользуясь объективом с большим увеличением. Окуляр вмонтирован в конец выдвижного держателя, при помощи которого можно при необходимости изменять длину тубуса. Передвигая вверх и вниз весь тубус с объективом и окуляром, микроскоп наводится на резкость.В качестве образца обычно берется очень тонкий прозрачный слой или срез, который кладут на стеклянную пластинку прямоугольной формы, называемую предметным стеклом, а сверху накрывают более тонкой стеклянной пластинкой меньших размеров, которая называется покровным стеклом. Чтобы увеличить контраст, образец часто окрашивают химическими веществами. Предметное стекло кладут на предметный столик таким образом, чтобы образец находился над центральным отверстием столика. Столик, как правило, бывает снабжен механизмом для плавного и точного перемещения образца в поле зрения. Третья система линз – конденсор – концентрирует свет на образце. Держатель конденсоров, которых может быть несколько, находится под предметным столиком. Здесь же расположена ирисовая диафрагма для регулировки апертуры. Еще ниже находится осветительное зеркало, устанавливаемое в универсальном шарнире. За счет того, что зеркало отбрасывает свет лампы на образец оптическая система микроскопа и создает видимое изображение. Чтобы изображение формировалось на фотопленке, окуляр заменяется фотоприставкой.
Ход лучей в микроскопе значительно сложнее, чем в лупе. Прежде чем попасть в глаз наблюдателя, лучи, идущие от предмета, проходят через две линзы и поэтому два раза меняют своё направление. Благодаря этому достигается очень большое увеличение угла зрения.Рассматриваемый предмет помещается вблизи первой линзы микроскопа, которая называется объективом (от слова объект - предмет). Расстояние между предметом и объективом всегда немного больше фокусного расстояния объектива.Поэтому после прохождения через объектив пучки лучей, идущие от каждой точки предмета, сходятся, и за линзой образуется изображение предмета. Величина этого изображения во много раз больше самого предмета. Изображение можно сделать видимым. Для этого следует поместить в то место, где оно образуется, какой-либо экран, например, лист белой бумаги или матовое стекло. Глазу, помещённому за матовым стеклом на оптической оси микроскопа, изображение будет казаться как бы нарисованным на стекле. Уберите матовое стекло. Изображение не исчезнет. Но теперь оно будет казаться будто бы висящим в воздухе. Глаз может видеть его так же, как видит он обычные предметы. Такое изображение называют действительным.Итак, первая линза микроскопа - объектив - создаёт действительное и увеличенное изображение предмета. Для чего же служит вторая линза микроскопа, обращённая к глазу? Какую роль она выполняет? Вторая линза микроскопа, называемая окуляром (окулюс - глаз), является не чем иным, как обычной лупой. С её помощью глаз рассматривает даваемое объективом действительное изображение предмета. Поэтому устанавливается окуляр так, чтобы даваемое объективом действительное изображение находилось между окуляром и его фокусом. Таким образом, в конечном счёте, наш глаз видит мнимое изображение, даваемое окуляром. Величина этого мнимого изображения в несколько раз больше величины действительного изображения, полученного с помощью объектива. Но так как само действительное изображение является увеличенным, то понятно, что общее увеличение микроскопа значительно больше увеличения, даваемого лупой.
- Биоэлектричество
- Электрическая активность сердца
- Треугольник Эйнтховена
- Стандартные отведения
- Параметры экг в норме
- 3.Биологическим объектам присущи пассивные электрические свойства: сопротивление и емкость.
- Закон Ома для электролитов.
- Эмф в медицине
- Работа и мощность
- Методы электростимуляции органов и тканей
- Нернста закон распределения
- Глаз редуцированный
- Механизм аккомодации
- Механизмы фоторецепции
- Увеличение и разрешающая способность микроскопа
- Устройство поляриметра-сахариметра
- Способ измерения концентрации оптически активных веществ в растворах
- Квантовая биофизика
- Масса и импульс фотона. Давление света.
- Люминесцентное свечение тел принято делить на следующие виды:
- Колориметрия
- Радиационная биофизика
- Виды ультрафиолетового излучения
- Два типа рентгеновского излучения: тормозное и характеристическое.
- Поглощение рентгеновского излучения веществом
- Применение рентгеновского излучения в медицине