Автоматизация энергоблока АЭС с ВВЭР-1000

дипломная работа

1.2.3 Трубный пучок кипящего теплообменника

Из статистической физики и из экспериментов известно, что распределение отказов однотипных элементов, находящихся в эксплуатации с одинаковыми характеристиками режимов, подчиняется закону нормального распределения (следствие №1 из Центральной предельной теоремы). Следовательно, текущему значению относительного суммарного числа заглушенных теплообменных трубок Pk в парогенераторе будет соответствовать интеграл вероятности Фk на момент наработки tk .

В [6] изложена методика расчета динамики отказов однотипных элементов из стали марки 08Х18Н10Т применительно к трубным пучкам кипящих теплообменников. В этом случае уже вводится критерий отказа уже не для металла, а в целом для теплообменника: его работоспособное состояние продолжается только до исчерпания технологического запаса теплообменных трубок.

В частности, для кинетики числа повреждений стали марки 08Х18Н10Т был выявлен экспериментально и теоретически обоснован нормальный закон распределения. В формулу для вычисления аргумента интеграла вероятности кроме экспозиции входит также концентрация хлорид-иона. Процедура вычисления прогнозируемого числа теплообменных рубок со сквозными повреждениями сводится к следующей последовательности операций.

Относительные величины суммарного числа поврежденных трубок с фиксированными наработками регистрации дефекта рассматриваются как ряд значений интеграла вероятности. Для этого ряда находятся табличные значения аргумента Хi по известным значениям интеграла вероятности Фk. Затем по известным интервалам времени между двумя последовательными отборами проб воды на анализ химического состава, с одной стороны, а также измеренными концентрациями хлорид-иона в каждой пробе формируется система несовместных уравнений типа (1.1)

(1.1)

Эта система решается методом наименьших квадратов относительно средних значений a и b. Прогноз суммарного количества поврежденных трубок парогенератора делается на основе:

- наперед заданного на определенный срок эксплуатации значения концентрации хлорид-иона;

- известных средних значений a и b;

- рассчитанного значения эксплуатационного фактора на дату прогноза

- табличные значения аргумента интеграла вероятности (Фпр)i на дату прогноза.

Полученные коэффициенты a и b используются для построения нового уравнения

(1.1а)

где и - соответственно, интервал времени от даты, когда делается прогноз до даты, на которую желательно знать полное число теплообменных трубок со сквозными дефектами и предполагаемая средняя концентрация хлорид-иона в воде в пределах этого интервала времени.

После этого по таблицам по найденному значению аргумента интеграла вероятности находится соответствующее значение интеграла вероятности (Фпр)i+1. Эта относительная суммарная ожидаемая величина поврежденных теплообменных трубок затем умножается на полное число трубок в парогенераторе.

В итоге получаем суммарное число теплообменных трубок на дату прогноза по наперед заданным наработке и средней концентрации хлорид-иона в воде парогенератора.

Экспозицию до наступления предельного состояния трубной системы парогенератора - исчерпания технологического запаса теплообменных трубок - можно найти, решая (1.5а) относительно фост при заданном значении (CCl- )ост.

(1.1б)

Поскольку в выражение для вычисления эксплуатационного фактора входят экспозиция и концентрация хлорид-иона в виде сомножителей, то одинакового приращения аргумента интеграла вероятности можно достичь их разным сочетанием. Это означает, что на всех этапах жизненного цикла трубного пучка существует возможность управления его ресурсом с помощью направленного воздействия техническими средствами на качество воды: малому содержанию хлорид-иона будет соответствовать более длительная эксплуатация. Это общеизвестно. Однако методика позволяет оценить негативные последствия для технического ресурса факт эксплуатации со ступенчатым изменением качества воды, в том числе и для случаев, например, непреднамеренной эксплуатации парогенераторов (сделанных в СССР) при повышенных концентрациях хлорид-ионов, как это имело место на парогенераторах комбината АЭС «Бруно Лейшнер» в 1982 г.

Делись добром ;)