Лекция 25. Уравнение Максвелла. Вихревое электрическое поле.
Из закона Фарадея:
, (23.1)
следует, что изменение сцепленного с контуром (подвижным и неподвижным) магнитного поля (потока), приводит к возникновению ЭДС индукции. При движении контура в постоянном магнитном поле возникновение ЭДС индукции объясняется действием силы Лоренца:
, (23.2)
Какова природа возникновения Еинд в неподвижном проводнике, находящимся в переменном магнитном поле?
ЭДС, возникающая в любой электрической цепи – это силы, которые создаются когда в этих цепях на носители зарядов действуют сторонние силы.
Опыт показывает, что в рассматриваемом случае сторонние силы не связаны ни с тепловыми, ни с химическими процессами, а также и ни с силой Лоренца. Ответ на данный вопрос был дан Максвеллом.
По Максвеллу:
1. Всякое переменное магнитное поле возбуждает в окружающем пространстве переменное электрическое поле напряженностью Ев, которое и является причиной возникновения Еинд и индуктивного тока (если проводник замкнут), где Ев – напряженность вихревого электрического поля.
Циркуляция (интеграл по замкнутому контуру) этого поля:
, (23.3)
где Еве – проекция вектора Ев на напряжение вектора dl;
- элементарный (очень маленький вектор) замкнутого контура L;
- частная производная, которая учитывает изменение потока магнитной индукции только от времени.
Подставим в данное выражение
Ф=(23.4)
- выражение магнитного потока через замкнутую поверхность S.
(23.5)
Если контур L и поверхность S неподвижны, то из векторного анализа следует, что операции интегрирования и дифференцирования можно поменять местами:
. (23.6)
Для электростатического поля с напряженностью Е циркуляция этого поля:
. (23.7)
Из сравнения следует, что между Е и Ев существует принципиальное различие:
(23.8)
- потенциальное поле;
. (23.9)
Электрическое поле, удовлетворяющее данному уравнению и возбужденное переменным магнитным полем является вихревым.
2. Замкнутый контур L, в котором возникает Еинд, играет второстепенную роль. Этот контур является лишь прибором, который позволяет обнаружить вихревое поле Ев, таким образом, наличие или отсутствие контура L не изменяет формулировку
, (23.10)
т.е. в любом случае Еинд≠0.
- История электроэнергетики Конспект лекций
- Предисловие
- Лекция 1. Назначение курса «История электроэнергетики»
- Лекция 2. Электрическая цепь. Схема замещения
- Лекция 3. Электрический ток. Электрическое поле
- Лекция 4. Эдс источника электрической энергии. Напряжение
- Постоянные и мгновенные значения тока, напряжения и эдс
- Лекция 5. Идеализированные элементы электрической цепи
- Лекция 6. Направление эдс, тока, напряжения. Второй закон Кирхгофа.Электрические цепи переменного тока. Характеристики переменного тока
- Второй закон Кирхгофа
- Электрические цепи переменного тока. Характеристики переменного тока
- Метод векторных диаграмм
- Лекция 7. Действующее значение переменного тока. Связь между током и напряжением в элементах электрической цепи тока
- А в
- Индуктивность
- Емкость
- Лекция 8. Закон Ома для цепи переменного тока. Активное, реактивное и полное сопротивления
- Лекция 9. Мощность цепи переменного тока
- Лекция 10. Трехфазные электрические цепи
- Лекция 11. Принцип действия синхронного генератора Принцип действия синхронного генератора
- Соединение фаз по схеме «звезда»
- Связь линейного напряжения с фазным
- Связь линейного и фазного тока
- Соединение фаз синхронного генератора и нагрузки по схеме «треугольник»
- Мощность в трехфазных цепях переменного тока
- Лекция 12. Трансформаторы Конструктивная схема простейшего трансформатора
- Принцип действия трансформатора
- Коэффициент трансформации трансформатора
- Саморегулирование магнитного потока трансформатором
- Трехфазные силовые трансформаторы
- Потери активной мощности трансформатора
- Энергетическая диаграмма трансформатора
- Кпд трансформатора
- Зависимость коэффициента полезного действия от нагрузки
- Лекция 13. Электрические машины
- Основные понятия и определения
- Лекция 14. Устройство машин переменного тока
- Электрические машины переменного тока
- Конструктивное исполнение электрических машин переменного тока
- Роторы асинхронных машин
- Лекция 15. Принцип действия асинхронного двигателя
- Однофазный асинхронный двигатель
- Преимущества и недостатки трехфазного асинхронного двигателя с короткозамкнутым ротором
- Лекция 16. Электрические машины постоянного тока
- Принцип действия генератора постоянного тока
- 1) Индуктор; 2) пазы; 3) обмотка; 4) якорь; 5) корпус (статор). Электрическая схема двигателя постоянного тока независимого возбуждения
- Принцип действия простейшего двигателя постоянного тока
- 1) Ток якоря Iя; 2) эдс якоря Ея; 3) обмотка возбуждения;
- Эдс обмотки якоря
- Лекция 18. Эдс обмотки якоря
- Электромагнитный момент, развиваемый в двигателе постоянного тока
- Назначение пускового сопротивления в схеме двигателе постоянного тока независимого возбуждения
- Лекция 19. Основные уравнения дпт независимого возбуждения Регулирование скорости двигателя постоянного тока
- Якорный способ
- Полюсное регулирование
- Реостатное регулирование
- Основные конструктивные узлы и схема включения трансформатора тока
- Особенности эксплуатации трансформаторов тока
- Измерительные трансформаторы напряжения
- Условные и графические обозначения трансформатора напряжения
- Лекция 21. Системы электроснабжения. Определения, терминология.
- Принцип построения систем электроснабжения
- Лекция 22. Основные этапы проектирования систем электроснабжения
- Лекция 24. Основные мероприятия и принципы энергосбережения
- Основные положения (принципы), обеспечивающие успех при энергосбережении
- Лекция 25. Уравнение Максвелла. Вихревое электрическое поле.
- Ток смещения
- Особенности тока смещения
- Лекция 26. Закон изменения напряжения на обкладках конденсатора
- Напряженность электрического поля внутри конденсатора
- Лекция 27. Уравнения Максвелла для электромагнитного поля
- Лекция 28. Компенсация реактивной мощности
- Содержание