3.2.2. Закономірності альфа - і бета – розпаду
а). Механізм альфа – розпаду
Явище альфа – радіоактивності було відкрите при вивченні радіоактивності природних елементів. Природні - випромінювачі розміщуються в таблиці Менделєєва, починаючи з номера Z82 (Z=82 має свинець). Оскільки в - частинці питома енергія зв’язку виявляється більшою, ніж у важких ядрах, - розпад енергетично є завжди можливим. Наприклад, нуклід урану 238U випромінює - частинки з періодом піврозпаду 4,5·109 років.
Самочинно відбувається ядерна реакція
МеВ. (3.2.2.1)
Різниця мас і продуктів розпаду складає 4,2 МеВ. (Маса материнського ядра перевищує суму мас продуктів розпаду наМ = 0.0045 а.о.м.).
Правило зміщення для - розпаду записують так:
, (3.2.2.2)
де - материнське ядро;- дочірнє ядро;частинка;-гамма - квант, який звільняється дочірнім ядром при переході у менш збуджений або нормальний стан.
Процес - розпаду має дві особливості, які були відкриті експериментально.
Між пробігом -частинки, який може бути мірою її початкової енергії і сталою радіоактивного розпаду є проста залежність, емпірично встановлена Гейгером і Неттолом ще у 1911 році і відома під назвою закону Гейгера-Неттола:
(3.2.2.3)
де АіВ– сталі величини, причому сталаВє однаковою для всіх радіоактивних елементів;А– є сталою лише в межах певного радіоактивного ряду.
Із закону Гейгера – Неттола випливає, що чим менш стабільні ядра, тим більша енергія у -частинок, які при цьому випромінюються.
Наступною особливістю - розпаду є досить низька енергія - частинок у момент вилітання із ядра, яка змінюється в межах 4–9 МеВ. Насправді - частинки у момент вилітання із ядра повинні мати значно більшу енергію, рівну висоті потенціального бар’єра. В реакції потенціальна енергія відштовхування- частинки на межі ядра торію складає біля 30 МеВ. Відповідно - частинка після подолання такого бар’єра повинна прискоритися до 30 МеВ. Експериментально ж виявлені - частинки з енергією 4.2 МеВ.
Чому енергія - частинок порівняно невисока, та як можна пояснити закон Гейгера-Неттола Відповідь на ці запитання дає квантова механіка.
Перед початком - розпаду в багатьох ядрах уже існує по одній -частинці. Енергія такої частинки . Якби не було потенціального бар’єра,- частинка вилітала б із ядра з енергією (рис. 3.2.1).
На рис. 3.2.1 V0 – глибина потенціальної ями; - енергія- частинок після вилітання із ядра.
Таке враження, що, залишаючи ядра, - частинки не помічають існування потенціального бар’єра.
Згідно з законами квантової механіки - частинки проявляють хвильові властивості. При попаданні на стінку потенціального бар’єра вони відбиваються від неї як хвилі. Але не всі - частинки відбиваються від стінки. Частина із них проникає крізь стінку і залишає ядро з енергією Е . Ефект проникнення - частинок крізь потенціальний бар’єр при енергіях значно нижчих його висоти називається тунельним ефектом.
Імовірність проникнення - частинок крізь потенціальний бар’єр визначається його прозорістю Д. При цьому стала радіоактивного розпаду , яка визначає імовірність розпаду за одиницю часу, дорівнює добутку “ прозорості “ бар’єра на число зіткнень n - частинки з внутрішніми стінками бар’єра, тобто
= Д n, (3.2.2.3)
, (3.2.2.4)
де m - маса частинки, r – ширина потенціального бар’єра; n – число ударів - частинки об стінку потенціального бар’єра; Д – прозорість бар’єра у цьому місці.
Мала прозорість Д бар’єра для проникнення крізь нього - частинки пояснює малу імовірність - перетворення (мала стала розпаду ) і великий період піврозпаду. Це і є пояснення закону Гейгера – Неттола.
При - розпаді дочірнє ядро, як правило, перебуває у збудженому стані і енергетично є нестабільним. Перехід з такого збудженого стану в нормальний стан супроводжується випромінюванням -квантів. Середній час збудженого стану не перевищує 10-13 с.
Дискретний спектр - випромінювання характеризує енергетичну структуру ядра атома. Пояснити дискретний спектр - випромінювання можна, виходячи лише із оболонкової моделі будови атомного ядра.
б). Закономірності - розпаду
Бета-розпад ядер радіоактивних елементів почали вивчати незабаром після відкриття радіоактивності. Відомі три види -розпаду. Серед них --розпад, +- розпад і К-захват. Експериментально було встановлено, що - випромінювання складається з електронів або позитронів і що ці види випромінювання супроводжуються випусканням нейтрино або антинейтрино. Нейтрино – це елементарна частинка з нульовим електричним зарядом і масою спокою рівною нулю. Нейтрино має півцілий спін подібно до електрона. Аналогічні характеристики має антинейтрино.
Правила зміщення для різних видів - розпаду можна записати так:
а). електронний - розпад
(3.2.2.5)
б). позитронний - розпад
(3.2.2.6)
в). К-захват, або захват ядром електрона з К-оболонки
(3.2.2.7)
де материнське ядро;дочірнє ядро;електрон;позитрон;антинейтрино;нейтрино.
Для пояснення різних видів β-радіоактивності прийшлось подолати значні труднощі. Перш за все слід було обґрунтувати походження електронів в процесі -розпаду. Протонно-нейтронна будова ядра усуває вилітання з ядра електронів оскільки їх там немає.
Сучасна теорія - розпаду ґрунтується на теорії, розробленій Фермі в 1931 р. Фермі у цій теорії стверджує, що протон або нейтрон можуть взаємно перетворюватись в пару частинок позитрон-нейтрино або електрон-антинейтрино. Така пара частинок породжується в ядрі дякуючи слабким взаємодіям подібно тому, як випромінюється фотон за рахунок електромагнетних взаємодій. При цьому слід мати на увазі, що до процесу -розпаду всередині ядра немає ні електрона ні нейтрино.
Найпростішим прикладом - розпаду є перетворення вільного нейтрона в протон з періодом піврозпаду 12 хв.:
(3.2.2.8)
де антинейтрино;електрон.
Такі перетворення нейтронів в протони були виявлені ще у 1950 році при дослідженні потужних нейтронних пучків атомних реакторів.
Процес перетворення нейтрона в протон в ядрах атомів супроводжується виконанням законів збереження електричних зарядів, імпульсу, масових чисел, лептонних зарядів та ін. Крім того, таке перетворення енергетично можливе, тому що маса нейтрона в спокої перевищує масу атома водню, тобто протона і електрона разом узятих. Різниця в масах нейтрона й протона з електроном дорівнює 0.782 МєВ. За рахунок цієї енергії може відбуватись самочинне перетворення нейтрона в протон.
При позитронному розпаді, тобто процесі перетворення одного із протонів ядра в нейтрон, недостаток енергії для такого перетворення доповнюється ядром
(3.2.2.9)
де нейтрино, відрізняється від антинейтрино лише знаком лептонного заряду (для нейтрино –1, а для антинейтрино +1).
Випадків перетворення вільного протона в нейтрон з випромінюванням нейтрино й позитрона поки що не спостерігалось. Такі перетворення заборонені законом збереження маси ( баріонного заряду ).
Третій вид - радіоактивності – електронне захоплення було відкрите ще у 1937 році американськими фізиками. Цей вид радіоактивності полягає в тому, що ядром можуть бути захоплені електрони з електронної оболонки власного атома. При цьому це можуть бути K-, L-, M- електрони. Те, що такий процес можливий, пояснюється в квантовій механіці. З квантової точки зору електронних орбіт в атомах не існує через хвильові властивості електронів. Перебування електронів на оболонках має імовірнісний характер. Перебування електронів біля ядра і навіть у ядрі законами квантової механіки не забороняється. Тому в тих випадках, коли материнське ядро дещо перенасичене протонами, можливий електронний захват згідно з схемою:
(3.2.2.10)
Електронний захват завжди супроводжується рентгенівським випромінюванням.
Енергетичний спектр - випромінювання є завжди суцільним з різкою межею для деякої максимальної енергії Еmax (рис.3.2.2.).
Гіпотеза про те, що - частинки народжуються лише певних енергій, а потім частину її втрачають при вилітанні з ядер, не підтверджується експериментально. Все пояснюється дуже просто: це перш за все процес народження двох частинок – електрона й антинейтрино або позитрона й нейтрино. У випадку, коли електрон має енергію Еmax, антинейтрино має енергію рівну нулю. Між двома частинками в процесі радіоактивного розпаду енергія розподіляється довільно.
- Взаємодія бета-частинок з речовиною................. ...........................88
- Передмова
- 3.1. Атомне ядро
- 3.1.2. Будова ядра. Нуклони, їх характеристики і взаємоперетворення. Нейтрино
- 3.1.3. Енергія зв’язку нуклонів у ядрі. Дефект маси. Ядерні сили і їх природа. Мезони Внутрішню енергію ядра можна розрахувати за формулою
- 3.1.4. Феноменологічні моделі будови атомного ядра
- 3.2. Радіоактивність
- Часто користуються несистемною одиницею активності Кюрі, яка відповідає активності 1г радію
- 3.2.2. Закономірності альфа - і бета – розпаду
- 3.2.3. Гамма-випромінювання. Взаємодії - променів з речовиною
- 3.3. Ядерні реакції
- 3.3.2. Реакції ділення. Ланцюгова реакція. Використання ядерної енергії
- 3.3.3. Термоядерні реакції. Енергія зірок. Керований термоядерний синтез
- 3.3.4. Ядерна зброя
- Розділ 2
- 3.4.2. Джерела опромінення. Природна й штучна радіоактивність
- 3.4.3. Потік і інтенсивність іонізуючих випромінювань
- 3.5. Взаємодія елементарних частинок
- 3.5.2.Вільний пробіг важких заряджених частинок у речовині.
- 3.5.3. Взаємодія бета-частинок з речовиною
- 3.5.4. Взаємодія нейтронів з речовиною
- Звідси радіус ядра дорівнює
- 3.6. Елементи дозиметрії
- 3.6.2. Особливості взаємодії різних видів випромінювання з біологічними об'єктами
- 3.6.3. Дія іонізуючого випромінювання на організм людини
- 3.6.4. Вплив іонізуючого випромінювання на біологічні об'єкти при загальному опроміненні
- 3.7. Біологічна дія іонізуючого випромінювання
- 3.7.2. Первинні процеси дії іонізуючих випромінювань
- 3.7.3. Деякі міри захисту від зовнішнього і внутрішнього опромінення
- 3.7.4. Розрахунок захисту і захисні матеріали
- Максимальний пробіг β - частинок різної енергії в речовині
- Радіоактивних речовин
- Орієнтовні норми радіаційної безпеки людей
- Перевідні коефіцієнти одиниць вимірювання радіоактивності:
- Середнє опромінення людини на землі, мЗв/рік
- Середня величина опромінення населення колишнього срср (1991р.) мЗв/рік
- Потужності експозиційної дози іонізуючого випромінювання в салоні пасажирського літака
- Місця нагромадження радіонуклідів в організмі людини
- Рівні радіоактивності деяких рідин
- Гранично допустимі вмісти деяких радіонуклідів в тілі людини (мкКі)
- Наслідки опромінення людини
- Радіоізотопний склад чорнобильського викиду
- Розподіл 131i і 137 Cs в різних районах земної кулі після аварії на чаес
- Тимчасові допустимі рівні вмісту 137Cs і 90Sr в харчових продуктах і питній воді, установлені після аварії на Чорнобильській аес (1991р.)
- Граничні допустимі дози опромінення, схвалені комісією ядерного регулювання сша (мЗв/рік)
- Закон україни Про охорону навколишнього природного середовища
- Загальні положення
- Екологічні права й обов'язки громадян
- Повноваження рад в області охорони навколишньої природного середовища
- Повноваження органів керування в області охорони навколишньої природного середовища
- Спостереження, прогнозування, облік і інформування в області навколишнього природного середовища
- Екологічна експертиза
- Стандартизація і нормування в області охорони навколишнього природного середовища
- Контроль і нагляд в області охорони навколишньої природного середовища