Аксиоматический метод
Это один из способов дедуктивного построения научных теорий, при котором:
а) формулируется система основных терминов науки (например, в геометрии Эвклида – это понятия точки, прямой, угла, плоскости и др.);
б) из этих терминов образуется некоторое множество аксиом (постулатов) – положений, не требующих доказательств и являющихся исходными, из которых выводятся все другие утверждения данной теории по определенным правилам (например, в геометрии Эвклида: «через две точки можно провести только одну прямую», «целое больше части»);
в) формулируется система правил вывода, позволяющая преобразовывать исходные положения и переходить от одних положений к другим, а также вводить новые термины (понятия) в теорию;
г) осуществляется преобразование постулатов по правилам, дающим возможность из ограниченного числа аксиом получать множество доказуемых положений – теорем. Таким образом, для вывода теорем из аксиом (и вообще одних формул из других) формулируются специальные правила вывода. Все понятия теории (обычно это дедуктивные), кроме первоначальных, вводятся посредством определений, выражающих их через ранее введенные понятия. Следовательно, доказательство в аксиоматическом методе – это некоторая последовательность формул, каждая из которых либо есть аксиома, либо получается из предыдущих формул по какому-либо правилу вывода.
Этапы становления аксиоматического метода.Обычно выделяют три качественно различных этапа или стадии развития представлений о существе аксиоматического метода.
****
1. Первый — этап содержательных аксиоматик, длившийся с появления «Начал» Евклида и до работ Н.И. Лобачевского по неевклидовым геометриям. Изложение геометрии Евклид начинает с перечисления некоторых исходных положений, а все остальные стремится так или иначе вывести из них. Далее, среди множества всех геометрических понятий, употребляемых им, он выделяет такие, которые считает за исходные, а все остальные стремится определить через них. Класс исходных положений (аксиом и постулатов) и класс исходных геометрических понятий Евклид рассматривает в качестве интуитивно ясных, самоочевидных — таков тот важнейший критерий, по которому происходит разбиение всего множества геометрических понятий и положений на исходные и производные. Все другие утверждения теории Евклид выводит логическим путем из аксиом и постулатов.
В качестве отличительных черт той системы аксиом, на основе которой Евклид развертывает геометрию, можно назвать следующие: во-первых, под аксиомами понимаются интуитивно истинные высказывания, у которых предполагается некоторое вполне определенное содержание, характеризующее свойства окружающего пространства; во-вторых, не была указана явным образом логика (т. е. правил вывода), опираясь на которую Евклид строит геометрию. В ней интуиция и дедукция шли рядом: недостаток дедукции восполняется наглядным примером — чертежом или построением циркулем и линейкой. Более того, необходимость использования циркуля и линейки просто постулировалась.
Конкретный, содержательный характер аксиоматики Евклида обусловил и весьма существенные недостатки, присущие первой стадии развития аксиоматического метода. Раз предполагалось, что аксиомы геометрии описывают интуитивно очевидные свойства пространства и логика не была строго очерчена, то оставались широкие возможности при дедукции из аксиом других геометрических утверждений вводить дополнительные (помимо принятой системы аксиом} интуитивно очевидные допущения как геометрического, так и логического характера. Тем самым, по существу, оказывалось невозможным провести строго логическое развертывание геометрии.
Тем не менее построение геометрии Евклидом служило образцом логической точности и строгости не только для математики, но и для всего научного знания на протяжении многих веков. Однако постепенно, начиная примерно с XVIII в., наблюдается постепенная эволюция стандартов строгости и точности построения теории, что необходимо порождало критическое отношение к собственно евклидовой традиции.
****
2. Второй — этап становления абстрактных аксиоматик, начавшийся с появления неевклидовых геометрий и кончившийся с работами Д. Гильберта по основаниям математики (1900—1914 гг.).
В формировании новых представлений о существе аксиоматического метода особенно большое значение имело создание неевклидовых геометрий. Открытие неевклидовых геометрий привело к существенному изменению взглядов не только на геометрию Евклида, но и на вопрос о природе и критериях математической строгости и точности вообще. Введя в систему аксиом новый постулат о параллельных прямых, противоречивший интуитивному представлению о свойствах окружающего пространства, стало невозможно получать выводы, опираясь на очевидные, наглядные допущения. Новый взгляд на место и роль интуитивно очевидных соображений в построении и развертывании геометрии заставлял более строго отнестись к характеристике допустимых логических средств вывода с целью исключения интуитивных допущений как геометрического, так и логического характера.
Здесь важно подчеркнуть и то обстоятельство, что исследования неевклидовой геометрии поставили в центр внимания понятие структуры; от проверки и доказательства истинности отдельных (часто связанных между собой лишь благодаря обращению к интуиции) предложений перешли к рассмотрению внутренней связанности (совместимости) системы предложений в целом, к трактовке истинности (и точности) как свойства системы, независимо от того, располагаем ли мы средствами проверки каждого предложения системы или нет.
Математические теории, построенные в соответствии с теми представлениями о математической и логической строгости, которые сформировались на протяжении первых двух третей XIX в., были значительно ближе к идеалу строго аксиоматического построения теории. Однако и в них этот идеал — исключительно логического выведения всех положений теории из небольшого числа исходных утверждений — не был реализован полностью. Во-первых, при развертывании теории из принятой системы аксиом продолжали опираться на интуитивно понимаемую логику, без явного указания всех тех логических средств, с использованием которых связан вывод из аксиом доказуемых положений. Во-вторых, создание неевклидовых геометрий, резко расходящихся с геометрической интуицией, остро поставило вопрос об основаниях приемлемости подобного рода теоретических построений. Эта задача решалась путем нахождения способа относительного доказательства непротиворечивости неевклидовых геометрий. Суть этого метода состоит в том, что для доказательства непротиворечивости неевклидовой геометрии подыскивается такая интерпретация ее аксиом, которая приводит к некоторой другой теории, в силу тех или иных оснований уже признанной непротиворечивой. До тех пор, пока система аксиом не находила такой интерпретации, вопрос о ее непротиворечивости, естественно, оставался открытым. К тому же на рубеже XIX —XX вв. выяснилось, что теория множеств, из которой в конечном счете черпались интерпретации всех других математических систем, далеко не безупречна в логическом отношении. В ней были открыты различные противоречия (парадоксы), грозившие разрушить величественное здание математики. Все это указывало на необходимость разработки некоторого другого способа доказательства непротиворечивости аксиоматически построенных теорий.
****
3. Третий — этап формализованных аксиоматик, начавшийся с появлением первых работ Гильберта по основаниям математики и продолжающийся до сих пор. Обращаясь к проблеме непротиворечивости аксиоматически построенных теорий, Д. Гильберт пытался решить задачу следующим образом: показать относительно некоторой заданной системы аксиом (той или иной рассматриваемой математической теории), что применение определенного, строго фиксированного множества правил вывода никогда не сможет привести к появлению внутри данной теории противоречия. Доказательство непротиворечивости той или иной системы аксиом, таким образом, связывалось уже не с наличием некоторой другой непротиворечивой теории, могущей служить интерпретацией данной системы аксиом, а:
1)с возможностью описать все способы вывода, используемые при логическом развертывании данной теории
2) с обоснованием логической безупречности самих используемых средств вывода. Для осуществления этой программы надо было формализовать сам процесс логического рассуждения.
Основные требования, предъявляемые к аксиоматическим формальным системам – непротиворечивость, полнота, независимость аксиом.
- Вопрос № 14 методы теоретического исследования идеализация
- Аксиоматический метод
- Формализация
- Этапы формализации
- Структура формализованных систем
- Значение формализации в научном познании
- Ограничения формализации
- Математическое моделирование
- Типы математических моделей
- Гипотетико-дедуктивный метод
- Общая структура гипотетико-дедуктивного метода (шаги его реализации):
- Восхождение от абстрактного к конкретному