Особенности эксплуатации трансформаторов тока
Известно, что у силовых трансформаторов существует свойство саморегулирования магнитного потока сердечника Фс (рис. 19.2), иначе можно записать
Фс = Ф1 – Ф2 = const, (19.2)
где Ф1 – магнитный поток в сердечнике, создаваемый первичной обмоткой;
Ф2 – магнитный поток в сердечнике, создаваемый вторичной обмоткой;
Рис. 19.2. Трансформатор тока
При изменении сопротивления нагрузки zН меняется ток I2, но
I1 = кттI2, (19.3)
то есть токи прямо пропорциональны, кроме того
Ф1=cI1, (19.4)
Ф2=cI2, (19.5)
т.е. потоки прямопропорциональны токам, таким образом, при изменении I1 и I2, Ф1 и Ф2 – меняются, но ФС остается постоянным.
У трансформаторов тока свойство саморегулирования отсутствует. Так как первичная обмотка включена непосредственно в силовую линию, обычно очень мощную, то изменения тока I2 не могут оказать влияния на ток I1, поэтому трансформатор тока эксплуатируется в режиме короткого замыкания, то есть значения I2 и Ф2 не равны нулю при работе трансформатора. Результирующий поток в сердечнике
Фс = Ф1 – Ф2. (19.6)
Режим холостого хода не допустим.
Рассмотрим, что будет если разомкнуть вторичную обмотку: I2 = 0, Ф2 = 0, таким образом, ФС = Ф1, но Ф1 = сI1, так как (обычно), то Ф1 = Фс достигает очень больших значений, это в свою очередь приводит к увеличению ∆РС (потери в стали), поскольку ∆РС пропорционально , вследствие чего сердечник за короткое время разогревается настолько, что нарушается изоляция между пластинами электротехнической стали. Нарушение изоляции приводит к еще большему увеличению потерь в стали ∆РС. Этот процесс развивается лавинообразно, и через некоторое время трансформатор тока выходит из строя. Само явление получило название «пожар железа».
Другой негативный факт при разомкнутой вторичной обмотке трансформатора тока – при увеличении ФС (рис. 19.3) резко возрастает ЭДС индукции во вторичной обмотке:
; (19.7)
Рис. 19.3. График магнитного потока сердечника трансформатора
Значение U2 достигает 1000 В и более, возникает пробой изоляции и напряжение, опасное для обслуживающего персонала, поэтому эксплуатация трансформатора тока в режиме холостого хода недопустима. При отсоединении (замене) амперметра, необходимо закорачивать выводы специальным замыкателем.
- История электроэнергетики Конспект лекций
- Предисловие
- Лекция 1. Назначение курса «История электроэнергетики»
- Лекция 2. Электрическая цепь. Схема замещения
- Лекция 3. Электрический ток. Электрическое поле
- Лекция 4. Эдс источника электрической энергии. Напряжение
- Постоянные и мгновенные значения тока, напряжения и эдс
- Лекция 5. Идеализированные элементы электрической цепи
- Лекция 6. Направление эдс, тока, напряжения. Второй закон Кирхгофа.Электрические цепи переменного тока. Характеристики переменного тока
- Второй закон Кирхгофа
- Электрические цепи переменного тока. Характеристики переменного тока
- Метод векторных диаграмм
- Лекция 7. Действующее значение переменного тока. Связь между током и напряжением в элементах электрической цепи тока
- А в
- Индуктивность
- Емкость
- Лекция 8. Закон Ома для цепи переменного тока. Активное, реактивное и полное сопротивления
- Лекция 9. Мощность цепи переменного тока
- Лекция 10. Трехфазные электрические цепи
- Лекция 11. Принцип действия синхронного генератора Принцип действия синхронного генератора
- Соединение фаз по схеме «звезда»
- Связь линейного напряжения с фазным
- Связь линейного и фазного тока
- Соединение фаз синхронного генератора и нагрузки по схеме «треугольник»
- Мощность в трехфазных цепях переменного тока
- Лекция 12. Трансформаторы Конструктивная схема простейшего трансформатора
- Принцип действия трансформатора
- Коэффициент трансформации трансформатора
- Саморегулирование магнитного потока трансформатором
- Трехфазные силовые трансформаторы
- Потери активной мощности трансформатора
- Энергетическая диаграмма трансформатора
- Кпд трансформатора
- Зависимость коэффициента полезного действия от нагрузки
- Лекция 13. Электрические машины
- Основные понятия и определения
- Лекция 14. Устройство машин переменного тока
- Электрические машины переменного тока
- Конструктивное исполнение электрических машин переменного тока
- Роторы асинхронных машин
- Лекция 15. Принцип действия асинхронного двигателя
- Однофазный асинхронный двигатель
- Преимущества и недостатки трехфазного асинхронного двигателя с короткозамкнутым ротором
- Лекция 16. Электрические машины постоянного тока
- Принцип действия генератора постоянного тока
- 1) Индуктор; 2) пазы; 3) обмотка; 4) якорь; 5) корпус (статор). Электрическая схема двигателя постоянного тока независимого возбуждения
- Принцип действия простейшего двигателя постоянного тока
- 1) Ток якоря Iя; 2) эдс якоря Ея; 3) обмотка возбуждения;
- Эдс обмотки якоря
- Лекция 18. Эдс обмотки якоря
- Электромагнитный момент, развиваемый в двигателе постоянного тока
- Назначение пускового сопротивления в схеме двигателе постоянного тока независимого возбуждения
- Лекция 19. Основные уравнения дпт независимого возбуждения Регулирование скорости двигателя постоянного тока
- Якорный способ
- Полюсное регулирование
- Реостатное регулирование
- Основные конструктивные узлы и схема включения трансформатора тока
- Особенности эксплуатации трансформаторов тока
- Измерительные трансформаторы напряжения
- Условные и графические обозначения трансформатора напряжения
- Лекция 21. Системы электроснабжения. Определения, терминология.
- Принцип построения систем электроснабжения
- Лекция 22. Основные этапы проектирования систем электроснабжения
- Лекция 24. Основные мероприятия и принципы энергосбережения
- Основные положения (принципы), обеспечивающие успех при энергосбережении
- Лекция 25. Уравнение Максвелла. Вихревое электрическое поле.
- Ток смещения
- Особенности тока смещения
- Лекция 26. Закон изменения напряжения на обкладках конденсатора
- Напряженность электрического поля внутри конденсатора
- Лекция 27. Уравнения Максвелла для электромагнитного поля
- Лекция 28. Компенсация реактивной мощности
- Содержание