logo search
Учебник для углубленного изучения физики

§ 5.9. Второй закон термодинамики

Второй закон термодинамики указывает направление возможных энергетических превращений и тем самым выражает необратимость процессов в природе. Он был установлен путем непосредственного обобщения опытных фактов.

Клаузиус Рудольф Юлиус Эмануэль (1822—1888) — выдающийся немецкий физик-теоретик, один из основателей термодинамики и молекулярно-кинетической теории.

Развивая идеи С. Карно, Клаузиус (одновременно с Кельвином) дал формулировку второго закона термодинамики, в которой содержалось утверждение о необратимости процесса передачи теплоты. Впервые ввел фундаментальное понятие энтропии как меры качества внутренней энергии тела. В области молекулярно-кинетической теории Клаузиус ввел понятие длины свободного пробега, количественно объяснил явления диффузии, теплопроводности и внутреннего трения в газах.

Есть несколько формулировок второго закона термодинамики, которые, несмотря на внешнее различие, выражают в сущности одно и то же и поэтому равноценны. Немецкий ученый Р. Клаузиус сформулировал этот закон так:

невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.

Здесь констатируется опытный факт определенной направленности теплопередачи: теплота сама собой переходит всегда от горячих тел к холодным. Правда, в холодильных установках осуществляется теплопередача от холодного тела к более теплому, но эта передача связана с другими изменениями: охлаждение достигается за счет работы.

Другая формулировка принадлежит английскому ученому У. Кельвину:

невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Здесь опять констатируются и уточняются опытные факты. Если, например, паровая машина совершает работу за счет теплоты, полученной от парового котла, то при этом совершаемая работа не является единственным результатом процесса, так как часть теплоты обязательно уходит в атмосферу вместе с отработанным паром. То же самое относится к двигателям внутреннего сгорания и вообще ко всем тепловым двигателям. Иначе говоря, ни один тепловой двигатель не может иметь коэффициент полезного действия, равный единице. Под коэффициентом полезного действия η теплового двигателя понимают отношение совершенной машиной работы А к количеству полученной для этой цели теплоты Q:

(5.9.1)

При адиабатном расширении газа в цилиндре работа совершается за счет убыли внутренней энергии без передачи теплоты другим телам. Согласно формуле (5.7.1) А' = -А = -ΔU. При изотермическом процессе вся передаваемая газу теплота оказывается равной работе газа: А' = Q.

Однако как в первом, так и во втором процессе работа совершается при однократном расширении газа до давления, равного внешнему (например, атмосферному давлению). Двигатель же должен работать длительное время. Это возможно лишь в том случае, когда все части двигателя (поршни, клапаны и т. д.) совершают движения, повторяющиеся через определенные промежутки времени. Двигатель должен периодически по прошествии одного рабочего цикла возвращаться в исходное состояние, или же в двигателе должен совершаться неизменный во времени (стационарный) процесс (например, непрерывное вращение турбины).

Чтобы возвратить газ в цилиндре в исходное состояние, его необходимо сжать. Для сжатия газа надо совершить над ним работу. Работа сжатия будет меньше работы, совершаемой самим газом при расширении, если газ сжимать при меньшей температуре, а значит, и при меньшем давлении, чем это происходило при расширении газа. Для этого необходимо до сжатия или в процессе сжатия охладить газ, передав некоторое количество теплоты другим телам (холодильнику).

Если первый закон термодинамики (закон сохранения энергии) можно высказать в форме утверждения: невозможно построить вечный двигатель первого рода, то формулировка второго закона, данная Кельвином, позволяет выразить этот закон в виде утверждения: невозможно построить вечный двигатель второго рода, т. е. двигатель, совершающий работу за счет охлаждения какого-либо одного тела.

Вечный двигатель второго рода не нарушает закона сохранения энергии, но если бы он был возможен, мы располагали бы практически неограниченным источником работы, черпая ее из океанов и охлаждая последние. Однако охлаждение океана, как только его температура становится ниже температуры окружающей среды, означало бы переход теплоты от тела более холодного к телу более горячему, а такой процесс сам собой идти не может. Из этого примера видно, что обе приведенные формулировки второго закона выражают одно и то же.

Направление процессов в природе указывает второй закон термодинамики.