6.2. Получение постоянной э. д. с. якоря
Рассмотрим получение постоянного напряжения между щетками. Для этого изобразим модель якоря между двумя полюсами машины (рис. 3).
Пусть машина используется в качестве генератора и якорь приводится во вращение с постоянной угловой скоростью ? в указанном на рис. 3 направлении, а внешняя цепь отключена. В проводниках, лежащих в пазах на поверхности и пересекающих линии нормальной к ней составляющей магнитной индукции В в зазоре между полюсом и якорем, при вращении якоря наводятся э. д. с.
e = Blv,
где l -- длина проводника (или якоря); ? -- линейная (окружная) скорость проводников.
Эти проводники называют активными.
Соединительные проводники на торцовых поверхностях якоря (лобовые части, см. рис. 9 и 10) не пересекают магнитных линий и в них э. д. с, не наводятся.
Применив известное правило правой руки для определения направления э. д. с. в активных проводниках, убедимся, что во всех проводниках, движущихся под одноименными полюсами, э. д. с. направлены одинаково; (крестики или точки). Под северным и южным полюсами направления э. д. с. противоположны. В проводниках, проходящих геометрические нейтрали, э. д. с. не наводятся, так как здесь B = 0. Таким образом, при вращении якоря в его проводниках наводятся переменные э.д.с.
Рис. 3. Модель якоря двухполюсной машины
Как указывалось, обмотка якоря представляет собой замкнутый контур (это легко видеть на изображении простейшей обмотки якоря -- бесконечной спирали на тороиде рис. 4, которая применялась в первых машинах).
Рис. 4. Простейшая замкнутая обмотка якоря и ее схема
Однако ток в контуре не возникает, так как алгебраическая сумма мгновенных значений э. д. с. е всех последовательно соединенных проводников обмотки равна нулю: обмотка выполняется с равным числом проводников под каждым полюсом, магнитные потоки полюсов одинаковы, полярность полюсов чередуется.
Если установить неподвижные электрографитовые щетки для осуществления скользящего контакту с проводниками, проходящими геометрические нейтрали (см. рис. 3), то между щетками всегда будут находиться проводники обмотки с одинаково направленными э. д. с. е, сумма которых максимальна и постоянна (при сдвиге щеток эта сумма уменьшается).
В действительности щетки касаются не проводников на поверхности якоря, а соединенных с ними соответствующих пластин коллектора (см. рис. 5 и 10). Коллектор -- цилиндр, набранный из медных пластин, изолированных одна от другой прокладками, и закрепленный на валу. Щетки устанавливают так, чтобы они касались пластин коллектора, соединенных с проводниками, проходящими геометрические нейтрали.
В результате установки щеток и соединения их с внешней цепью обмотка якоря по отношению к его зажимам оказывается разделенной на параллельно соединенные ветви с одинаковыми э. д. с. Е и сопротивлениями Rа. Из схематически изображенной на рис. 6, а обмотки якоря видно, что э. д. с. якоря Е равна э. д. с. любой из параллельно соединенных ветвей. Внутреннее сопротивление якоря Rя -- это эквивалентное сопротивление параллельно соединенных ветвей обмотки. Обычно оно мало (от долей ома у крупных машин до единиц ом у небольших). Если к зажимам якоря генератора присоединить внешнюю электрическую цепь, то э. д. с. якоря создаст в цепи ток якоря (ток нагрузки, рабочий ток). В двигателе ток создается внешним источником и в якоре делится на токи параллельных ветвей. Направление тока во всех проводниках одной параллельной ветви одинаковое, противоположное направлению токов в другой ветви.
Рис. 5. Коллектор (разрез) Рис. 6. Схема замещения обмотки якоря с двумя параллельными ветвями (а), изображение якоря по ГОСТ (б)
Обычно машина постоянного тока выполняется многополюсной (см, рис. 7 и 8). При этом возрастает число пар щеток и параллельных ветвей якоря.
На электрических схемах якорь машины постоянного тока изображают (ГОСТ 2.756--76) условно в виде окружности с двумя диаметрально расположенными щетками (рис. 6, б), а обмотку возбуждения -- как индуктивный элемент.
- Введение
- 1. Выбор рода тока и напряжения двигателя
- 2. Выбор номинальной скорости двигателя
- 3. Выбор конструктивного исполнения двигателя
- 4. Выбор двигателя по мощности
- 5. Расчёт мощности и выбор электродвигателя для длительного режима работы
- 6. Устройство и принцип действия двигателя постоянного тока
- 6.1. Электромагнитная схема
- 6.2. Получение постоянной э. д. с. якоря
- 6.3. Конструкция современной машины постоянного тока
- 7. Обозначение элементов и изображение схемы автоматизированного пуска двигателя
- Контакт замыкающий с выдержкой времени при замыкании
- Контакт размыкающий с выдержкой времени при замыкании
- 8. Автоматизация пуска двигателя в функции времени
- 9. Электрические реле
- 10. Заключение