6.3. Конструкция современной машины постоянного тока
Выше была рассмотрена двухполюсная модель машины постоянного тока. Современные машины имеют не менее четырех полюсов. На рис. 7 показаны основные элементы конструкции четырехполюсной машины, а на рис. 8 -- разрез ее магнитной системы.
Станина (6 на рис. 7) представляет собой полый стальной цилиндр, внутри которого укреплены основные полюсы 5 магнитной системы с катушками обмотки возбуждения. Между основными находятся узкие добавочные полюсы 4 со своими катушками
Станину машины отливают или свертывают в цилиндр из толстой листовой стали и сваривают по шву. Полюсы отковывают из мягкой стали или набирают из стальных пластин. К торцам станины прикреплены подшипниковые щиты 1 с подшипниками, в которых вращается вал якоря 3. На щите со стороны коллектора установлены щеткодержатели со щетками 2. Якорь представляет собой стальной барабан, (рис. 9,
Для уменьшения потерь от вихревых токов при перемагничивании его набирают из дисков электротехнической стали толщиной 0,5 мм (рис. 9, в). Барабанная обмотка отличается от спиральной обмотки на тороиде тем, что все проводники укладываются витками на поверхности барабана и являются активными. При этом стороны витка располагаются под разноименными полюсами так, что э. д. с. в них складывается. На рис. 10 схематически показана укладка витков обмотки в пазы и их соединение с коллекторными пластинами. Проводники (витки) обмотки, заключенные между двумя ближайшими пластинами, образуют секцию обмотки (на рис. 10 показаны только две секции). Обмотка имеет несколько десятков секций, столько же и коллекторных пластин.
На корпусе машины имеется коробка с зажимами, куда выведены концы обмотки якоря и обмотки возбуждения. На паспортном щитке указываются номинальные параметры машины: отдаваемая электрическая мощность генератора или механическая мощность двигателя, напряжение, ток, частота вращения, способ возбуждения, к. п. д., масса, номер машины и марка завода-изготовителя.
6.4. Принцип действия генератора
Пусть якорь машины вращается в магнитном поле с помощью какого-либо приводного двигателя (рис. 11, а). Как указывалось, в проводниках вращающегося якоря возникают э. д. с, направление которых можно определить по правилу правой руки
Если к зажимам якоря подключить приемник, то э. д. с. якоря вызовет в цепи ток. Но с появлением тока в проводниках якоря, находящихся в магнитном поле, возникают электромагнитные силы. Определим их направление на рис. 11. Токи в проводниках якоря направлены также, как и вызвавшие их э. д. с. По правилу левой руки найдем, что электромагнитные силы создают момент, противодействующий вращению якоря. Если скорость якоря ? постоянна, то вращающий момент приводного двигателя равен противодействующему электромагнитному моменту генератора: Mвр=Mпр=M. Таким образом, для производства электрической энергии необходимо затрачивать механическую энергию. В соответствии со схемой замещения цепи якоря генератора (рис. 11, б) запишем уравнение ее электрического состояния:
E = U + RяIя
Умножив это выражение на Iя, получим уравнение баланса мощности цепи якоря:
EIя = UIя + RяI2я
Мощность приемника Р=UIя и мощность, электрических потерь в обмотке якоря ?Pэя = RяI2я составляет электромагнитную мощность EIя = Pэм, развиваемую генератором, травную механической мощности приводного двигателя:
EIя = Pэм = M? = Pмех.
6.5. Принцип действия двигателя
Если подать на зажимы неподвижного якоря машины постоянного тока напряжение от какого-нибудь источника, то оно вызовет ток в цепи якоря (рис. 12). Пусть направление токов в якоре будет таким, как на рис. 12, а. Определив направление электромагнитных сил, найдем, что они создают вращающий момент. Машина работает в качестве электродвигателя. Если скорость ротора ? постоянна, то вращающий момент равен противодействующему моменту сопротивления механизма на валу: Мвр=Мпр=М. Во вращающемся в магнитном поле якоре наводится э. д. с. Определив направление э. д. с. в проводниках якоря на рис. 12, а, найдем, что оно противоположно направлению тока. Ток направлен против э. д. с. Поэтому часто э. д. с. якоря двигателя называют противо-э. д. с. Составив схему замещения цепи якоря двигателя (рис. 12, б), найдем, что приложенное к зажимам якоря двигателя напряжение равно сумме противо-э. д. с. и падения напряжения на внутреннем сопротивлении якоря:
U = E + RяIя
Отсюда ток якоря двигателя
Iя = (U - E)/ Rя
Уравнение баланса мощности цепи якоря двигателя имеет вид
U Iя = E Iя + RяI2я
Оно показывает, что электрическая мощность Рэ = U Iя, подводимая к двигателю от внешнего источника, превращается в электромагнитную мощность Pэм = EIя и мощность потерь в обмотке якоря. Электромагнитная мощность, как и в генераторе, равна механической мощности, развиваемой двигателем:
EIя = Pэм = M?.
- Введение
- 1. Выбор рода тока и напряжения двигателя
- 2. Выбор номинальной скорости двигателя
- 3. Выбор конструктивного исполнения двигателя
- 4. Выбор двигателя по мощности
- 5. Расчёт мощности и выбор электродвигателя для длительного режима работы
- 6. Устройство и принцип действия двигателя постоянного тока
- 6.1. Электромагнитная схема
- 6.2. Получение постоянной э. д. с. якоря
- 6.3. Конструкция современной машины постоянного тока
- 7. Обозначение элементов и изображение схемы автоматизированного пуска двигателя
- Контакт замыкающий с выдержкой времени при замыкании
- Контакт размыкающий с выдержкой времени при замыкании
- 8. Автоматизация пуска двигателя в функции времени
- 9. Электрические реле
- 10. Заключение