1.2. Основные законы электротехники
Закон Кулона. Сила взаимодействия между двумя точечными неподвижными зарядами q1 и q2, расположенными на расстоянии R друг от друга в однородной среде прямо пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними:
.
Закон Ома справедлив для цепей постоянного и переменного синусоидального тока и связывает между собой величины сопротивления элемента цепи, его тока и напряжения.
Падение напряжения на участке цепи пропорционально току и величине сопротивления этого участка:
при постоянном токе U = IR,
при переменном токе U = I z.
Например, для электрической цепи (рис. 1.1): U = I1 R1.
Обобщенный закон Ома имеет место для цепи (ветви) тп постоянного или переменного тока, содержащей источники ЭДС и J, и сопротивления R или Z:
при постоянном токе
при переменном токе
где Umn — напряжение между началом и концом ветви тп,
— алгебраическая сумма всех ЭДС, находящихся в этой ветви;
— арифметическая сумма всех сопротивлений в ветви;
— алгебраическая сумма всех комплексных сопротивлений в ветви при переменном токе.
Из обобщенного закона Ома следует, в частности, что напряжение на зажимах источника ЭДС равно величине ЭДС минус падение напряжения на внутреннем сопротивлении источника.
. Первый закон Кирхгофа. Алгебраическая сумма всех токов, сходящихся в любом узле электрической цепи, равна нулю.
Первый закон Кирхгофа является одним из непосредственных следствий закона сохранения энергии.
Для цепи постоянного тока:
Для цепи переменного тока: или
где — комплексные действующие значения синусоидальных токов;
ik(t) —мгновенные значения токов;
= -1 если ток ветви втекает в узел и = +1 если ток вытекает из узла.
Второй закон Кирхгофа. Алгебраическая сумма электродвижущих сил какого-либо замкнутого контура электрической цепи равна алгебраической сумме падений напряжений в нем.
Для цепей постоянного тока:
Для цепей переменного тока: или
где ek(t) - мгновенные значения переменных ЭДС;
uk(t) , — мгновенные значения падения напряжений на пассивных элементах контура;
— векторы комплексных действующих значений ЭДС;
— векторы комплексных действующих значений падений напряжений. Направление обхода контура выбирается произвольным. ЭДС имеют знак плюс, если их направление совпадает с направлением обхода контура. Падения напряжений имеют знак плюс, если выбранные знаки токов в ветвях контура совпадают с направлением обхода контура.
Закон электромагнитной индукции Фарадея. Закон связывает ЭДС, наводимую в произвольном контуре или проводнике, помещенном в магнитное поле, со скоростью изменения магнитного потока поля или скоростью движения контура или проводника относительно неизменного по величине магнитного потока поля. ЭДС измеряется в вольтах (В).
Электродвижущая сила е, наводимая в проводнике или контуре, пропорциональна скорости изменения магнитного потока Ф, пронизывающего этот проводник или контур, взятой со знаком минус:
В соответствии с законом Фарадея изменение тока, протекающего в контуре с индуктивностью L, вызывает изменения его магнитного потока, что наводит в этом контуре ЭДС, называемую ЭДС самоиндукции: ,
ЭДС взаимоиндукции наводится в одном из магнитносвязанных контуров, если в другом происходит изменение величины тока:
где M12— коэффициент взаимоиндукции, Гн.
Знак (+) ставят при встречных направлениях магнитных потоков, (-) — при согласных направлениях.
При перемещении проводника в магнитном поле с неизменным магнитным потоком в нем наводится ЭДС, В: е = В l sin,
где В — магнитная индукция поля, Тл;
l— длина проводника, м;
— скорость движения проводника, м/с;
— угол между векторами магнитной индукции и скорости, град.
Закон электромагнитной индукции носит фундаментальный характер и лежит в основе принципа действия всех современных электромеханических преобразователей энергии: электрических машин, электрических аппаратов и т.д.
Закон Ленца. Если по произвольному контуру, протекает изменяющийся ток, то он создает собственный изменяющийся магнитный поток, наводящий в контуре противо -ЭДС, направленную так, чтобы воспрепятствовать всякому изменению тока.
Указанную противо-ЭДС называют также ЭДС самоиндукции. Это обстоятельство отмечается в приведенных выше соотношениях знаком минус. Таким образом, появление в контуре с током ЭДС самоиндукции возможно при двух непременных условиях: изменяющемся характере тока и наличии индуктивности в цепи.
Это свидетельствует об ошибочности представлений некоторых авторов, полагающих, что ЭДС самоиндукции определяет меру электромагнитной инерции элемента цепи. Мерой инерции является величина индуктивности элемента цепи. ЭДС самоиндукции играет в электротехнических устройствах важную роль.
Закон Джоуля-Ленца. Закон определяет меру теплового действия электрического тока.
Количество теплоты, выделяющейся током в проводнике, равно работе электрического поля по перемещению заряда за время t:
Q=Ut=I2 r t.
Единица измерения количества теплоты — джоуль (Дж). Поскольку 1 кал = 4.1868 Дж, а 1 Дж = 0,24 кал, то количество теплоты, измеряемое в калориях: Q=0,24 I2 r t.
Закон электромагнитных сил Ампера. Сила механического взаимодействия проводника с током I и магнитного поля с индукцией В прямо пропорциональна произведению магнитной индукции, длины проводника и силы тока в проводнике: F = В l I sin,
где F — сила взаимодействия, Н;
l — длина проводника, м;
— угол между векторами магнитной индукции и тока.
Сила взаимодействия двух достаточно длинных проводов (l = l1 =l2), расположенных параллельно на расстоянии :
где F — сила взаимодействия, Н;
I1 и I2 — токи в проводах. А;
r , 0— относительная и абсолютная магнитная проницаемости.
- Министерство образования и науки
- Левина м.Г. Основы промышленной электротехники
- 1. Элементы электротехники
- 1.1. Основные понятия и определения электротехники
- 1.1.2. Электродвижущая сила, электрическое напряжение
- 1.1.3. Электрическая цепь
- 1.1.4. Электрическое сопротивление и его виды
- 1.1.5. Электрическая энергия и мощность
- 1.2. Основные законы электротехники
- 2. Расчетные формулы для цепей постоянного тока
- 2.1. Метод контурных токов (метод Максвелла)
- 2.2. Метод двух узлов
- 2.3. Метод наложения
- 2.4. Метод эквивалентного генератораt
- 2.5. Преобразование сложных цепей в простые эквивалентные
- 2.6. Баланс электрических мощностей цепи
- 2.7. Переходные процессы в цепях постоянного тока
- 2.8. Расчетные формулы для цепей однофазного тока
- 2.8.2. Мощности в цепях переменного тока
- 2.9. Расчетные соотношения для цепей трехфазного тока
- Метод симметричных составляющих
- 3. Диэлектрические материалы
- 3.1. Физические свойства диэлектрических материалов
- 3.2. Технические данные диэлектрических материалов
- 4. Проводниковые материалы
- 4.1. Проволока, провода, допустимые токовые нагрузки
- 4.2. Шины и ленты
- 4.3. Кабельные изделия, допустимые токовые нагрузки кабелей
- 4.4. Установочные провода и соединительные шнуры
- 5. Трансформаторы
- 5.1. Основные сведения о типах трансформаторов
- 5.2. Силовые трехфазные трансформаторы
- 5.3. Однофазные трансформаторы
- 5.4. Трансформаторы тока и напряжения
- 6. Синхронные машины
- 6.1. Синхронные генераторы
- 6.2. Синхронные двигатели
- 6.3. Синхронные компенсаторы
- 7. Асинхронные двигатели
- 7.1. Основные сведения о серийных асинхронных двигателях
- 7.2. Асинхронные двигатели новых серий ra и 6а
- 7.3. Асинхронные двигатели серии 4а с короткозамкнуты м ротором
- 7.4. Двигатели серии 4а с фазным ротором
- 7.5. Асинхронные двигатели большой мощности
- 7.6. Асинхронные двигатели серии аи
- 7.8. Двигатели серии а02
- 7.9. Асинхронные двигатели серии 5а (5ан, 5анк)
- 8. Машины постоянного тока
- 8.1. Двигатели постоянного тока серий 2пн, 2пф, 4пб, 4пф
- 8.2. Крановые и краново-металлургические двигатели
- 8.3. Генераторы постоянного тока
- 8.4. Универсальные коллекторные двигатели
- 9. Электрические аппараты до 1000 в
- 9.1. Автоматические выключатели
- 9.2. Контакторы, магнитные пускатели
- 9.3. Реле
- 9.4. Командоаппараты, магнитные станции, кнопки, выключатели, переключатели
- 9.5. Бесконтактные аппараты
- 9.6. Предохранители плавкие
- 9.7. Резисторы и реостаты силовые
- 9.8. Силовые конденсаторы и конденсаторные установки
- 10. Электрооборудование и электрические аппараты высокого напряжения
- 10.1. Масляные выключатели
- 10.2. Электромагнитные выключатели
- 10.3. Разъединители внутренней и наружной установки 10 кВ
- 10.4. Комплектные трансформаторные подстанции 10 кВ
- 10.5. Комплектные конденсаторные установки 6 (10) кВ
- 11. Элементы электроснабжения и электрического освещения
- 11.1. Общие вопросы электроснабжения. Параметры напряжения
- 11.2. Воздушные и кабельные лэп напряжением 6(10) и 0,4 кВ
- 11.3. Расчет и выбор сечений проводов, кабелей, шин
- 11.4. Расчет токов короткого замыкания и выбор автоматических выключателей и предохранителей
- 11.5. Приборы электрического освещения.
- 11.6. Измерение электрической энергии
- 11.7. Внутренние и наружные электрические проводки
- 12. Автономные источники электрической энергии
- 12.1. Автономные дизель-электрические и бензоэлектрические агрегаты и станции
- 12.2. Ветроэлектрические станции
- 12.3. Комплектные фотоэлектрические солнечные системы
- 12.4. Малые гэс и микроГэс
- 12.5. Аккумуляторы
- 13. Сварочное электрооборудование
- 13.1. Сварочные аппараты переменного и постоянного тока
- 13.2. Сварочные выпрямители типа вд
- 13.3. Сварочные преобразователи-агрегаты
- 14. Бытовое электрооборудование
- 14.1. Общие вопросы
- 14.2. Бытовой электрический инструмент
- 14.3. Бытовые электрические насосы
- 14.4. Бытовое электрооборудование для электрического отопления
- 14.5. Электроводонагреватели
- 14.6. Электрические плитки
- 14.7. Трубчатые электронагреватели (тэНы)
- 14.8. Электрокалориферы
- 14.9. Электрокаменки типа эк
- 14.10. Электрообогреватели для теплиц и парников
- 15. Вопросы электробезопасности
- 15.1. Основные понятия и определения
- 15.2. Защитные средства
- 15.3. Защитное заземление и защитное зануление
- Литература
- 1. Элементы электротехники 2
- 2. Расчетные формулы для цепей постоянного тока 9
- 12. Автономные источники электрической энергии 76
- 13. Сварочное электрооборудование 81
- 14. Бытовое электрооборудование 83
- 15. Вопросы электробезопасности 94