4.2.3. Устройства автоматики
Управление электроэнергетической системой (ЭЭС) в нормальном и аварийном режимах осуществляется диспетчерским персоналом и различными автоматическими устройствами [8].
Все автоматические устройства управления, применяемые в ЭЭС, можно разделить на две группы: 1 – автоматические устройства управления нормальными режимами; 2 – автоматические устройства управления аварийными режимами (устройства противоаварийного автоматического управления ПАУ) [8].
К устройствам первой группы относят: устройства регулирования частоты и активной мощности (АРЧМ); устройства автоматического регулирования возбуждения и форсировки возбуждения синхронных машин (АРВ); автоматические регуляторы коэффициентов трансформации силовых трансформаторов (АРКТ); устройства управления трансформаторами на подстанциях для включения и отключения одного из параллельно работающих и другие.
Автоматические устройства второй группы – ПАУ осуществляют следующие функции: фиксируют факт и место возникновения аварийного нарушения нормального режима и обеспечивают отделение повреждённого участка от неповреждённой части ЭЭС; предотвращают распространение аварии на соседние неповреждённые участки ЭЭС; восстанавливают нормальный режим работы.
Первую функцию выполняют устройства ПАУ, фиксирующие возникновение в ЭЭС КЗ и отключающие повреждённый участок устройствами РЗ и УРОВ.
Вторую функцию выполняют устройства противоаварийной автоматики (ПАА), к которым относят: автоматику предотвращения нарушения устойчивости параллельной работы (АПНУ); автоматику ликвидации асинхронного режима (АЛАР); устройства автоматической частотной разгрузки (АЧР) и многие другие.
Третью функцию по восстановлению нормального режима работы выполняют следующие устройства: автоматического повторного включения (АПВ) линий, трансформаторов, шин подстанций и станций, отключённых действием устройств РЗ и АЧР; автоматического включения резерва (АВР), восстанавливающие электроснабжение потребителей, потерявших питание в результате отключения источника питания и другие.
В соответствии с ПУЭ [2] на выключателях всех воздушных и кабельно-воздушных линиях электропередачи предусматриваются устройства АПВ. На одиночных линиях с односторонним питанием применяют трёхфазное АПВ с пуском от несоответствия между ранее поданной оперативной командой и отключённым положением выключателя. Время действия должно быть не меньше необходимого для полной деонизации среды в месте короткого замыкания и для подготовки привода выключателя к повторному включению, должно быть согласовано с временем работы других устройств автоматики, как то АВР и АЧР. Минимальное время срабатывания АПВ составляет примерно 0,5 – 0,7 с, а время готовности 20 – 25 с. Время срабатывания по согласованию с действиями других устройств автоматики будет равно:
, (4.1)
где − наибольшее время действия устройств включения резерва с
учётом времени отключения и включения выключателей;
−ступень селективности.
Устройства автоматического включения резерва (АВР) устанавливаются на подстанциях и силовых пунктах, для которых предусмотрено несколько источников питания, работающих раздельно в нормальном режиме. Устройства АВР осуществляют возможное быстрое автоматическое переключение на резервное питание потребителей, обесточенных в результате повреждения или самопроизвольного отключения рабочего источника электроснабжения. Действие АВР не должно приводить к недопустимой перегрузки резервного источника, как в последующем установившемся режиме, так и в процессе самозапуска потерявших питание электродвигателей потребителя.
Устройства АВР должны:
Обеспечивать возможное раннее выявление отказа рабочего источника питания;
Действовать согласованно с другими устройствами автоматики (АПВ и АЧР) в интересах возможного полного сохранения технологического процесса;
Не допускать включения резервного источника питания на короткое замыкание;
Не допускать подключение потребителей к резервному источнику, напряжение на котором понижено.
Устройства автоматической частотной разгрузки (АЧР) предусматриваются на подстанциях и распределительных пунктах для отключения части электроприёмников при возникновении в питании энергосистемы дефицита активной мощности, сопровождающегося снижением частоты, в целях сохранения генерирующих источников и возможной быстрой ликвидации аварии. В первую очередь АЧР отключает потребителей «третьей» категории по надёжности электроснабжения, но если этого недостаточно, то отключаются потребители «второй» категории, перерыв в электроснабжении которых не будет особо критическим. Так же наряду с АЧР применяются устройства частотного автоматического повторного включения (ЧАПВ). ЧАПВ потребителей электроэнергии, отключаемых при АЧР целесообразно осуществлять с контролем нормального уровня напряжения на шинах, к которым подключается группа электроприёмников.
На подстанции Гидростроитель предусматриваются следующие устройства автоматики:
Индивидуальное регулирование коэффициента трансформации трёхобмоточных трансформаторов под нагрузкой;
АЛАР на линии 110 кВ «Гидростроитель – Зяба»;
АПВ на всех линиях 6, 35, 110 кВ;
АЧР и ЧАПВ на всех линиях 35, 110 кВ;
АВР на всех секционных выключателях.
- Содержание
- 3. Расчёт токов короткого замыкания и рабочих
- 6. Составление сметной ведомости на монтаж
- Введение
- 1. Краткий анализ подстанции гидростроитель
- 1.1. Место и назначение подстанции в районной энергосистеме
- 1.2. Основные показатели подстанции
- 1.3. Описание главной схемы электрических силовых цепей
- 2. Выбор основного оборудования подстанции
- 2.1. Выбор мощности и количества силовых трансформаторов
- 2.2. Выбор выключателей и разъединителей на ру 110/35/6 кВ
- 2.3. Выбор трансформаторов собственных нужд
- Расчёт токов короткого замыкания и рабочих токов в объёме, необходимом для релейной защиты
- Определение параметров схемы замещения при 3-х и 2-х фазных коротких замыканиях
- Расчёт токов трёхфазного короткого замыкания
- Расчёт токов двухфазного короткого замыкания
- Расчёт параметров схемы замещения для токов нулевой последовательности
- Расчет утроенного тока нулевой последовательности при однофазном кз
- 3.7. Расчет утроенного тока нулевой последовательности при двухфазном кз на землю
- 3.8. Расчёт токов двухфазного кз на землю
- 3.9. Расчёт рабочих и номинальных токов
- 4. Релейная защита и автоматика
- 4.1. Назначение релейной защиты и автоматики
- 4.2. Выбор объектов защит и их типов
- 4.2.1. Защита силовых трёхобмоточных трансформаторов
- 4.2.2. Защита отходящих линий
- 4.2.3. Устройства автоматики
- 4.3. Защита силовых трёхобмоточных трансформаторов
- 4.3.1. Расчёт параметров срабатывания дифференциальной токовой защиты трансформатора тдтн – 63000/110/38,5/6,6 −у-1 на реле типа дзт – 21
- 4.3.2. Расчёт параметров срабатывания защиты от многофазных коротких замыканий на стороне нн, выполненной в виде максимальной токовой защиты с комбинированным пуском по напряжению
- 4.3.3. Расчёт параметров срабатывания защиты от многофазных коротких замыканий на стороне сн, выполненной в виде максимальной токовой защиты с комбинированным пуском по напряжению
- 4.3.4. Расчёт параметров срабатывания защиты от многофазных коротких замыканий на стороне вн, выполненной в виде максимальной токовой защиты с комбинированным пуском по напряжению
- 4.3.5. Расчёт параметров срабатывания максимальной токовой защиты трансформатора с выдержкой времени от перегрузки
- 4.3.6. Защита от замыкания на землю со стороны низшего напряжения трансформатора
- 4.3.7. Газовая защита
- 4.4. Защита отходящих линий
- 4.4.1. Расчёт дифференциально-фазной высокочастотной защиты
- 4.4.2. Расчёт трёхступенчатых дистанционных защит отходящих линий 110 кВ
- 4.4.3. Расчёт токовых отсечек от междуфазных коротких замыканий
- 4.4.4. Расчёт параметров срабатывания трёхступенчатых токовых защит нулевой последовательности от коротких замыканий на землю
- 4.4.5. Расчёт параметров срабатывания максимальных токовых защит отходящих линий 35 кВ
- 4.5. Применение современных микропроцессорных защит линий электропередачи
- 4.5.1. Общие сведения о микропроцессорных защитах
- 4.5.2. Применение микропроцессорного терминала серии MiCom−124 для защиты линии 35 кВ «Гидростроитель – Осиновка»
- 4.5.3. Расчёт параметров срабатывания трёхступенчатой токовой защиты блока MiCom – 124 и составление файла-конфигурации
- 5. Безопасность жизнедеятельности
- 5.1. Действие электрического тока на организм человека
- 5.2. Условия поражения электрическим током
- 5.3. Классификация электроустановок и помещений в отношении электробезопасности
- 5.4. Основные меры защиты, обеспечивающие безопасность электротехнического персонала и посторонних лиц
- 5.5. Оказание первой помощи при поражении электрическим током
- 6. Составление сметной ведомости на монтаж силового трансформатора и расчёт стоимости аппаратуры релейной защиты
- 6.1. Составление сметой ведомости на монтажные работы по установке силового трансформатора
- 6.2. Расчёт стоимости аппаратуры релейной защиты трансформатора
- Заключение
- Список использованных источников