4.4.1. Расчёт дифференциально-фазной высокочастотной защиты
По сравнению с дистанционной защитой и токовой направленной защитой нулевой последовательности дифференциально-фазная в.ч. защита имеет следующие преимущества [11]:
защита по принципу действия работает правильно в неполнофазных режимах (нагрузочном или при внешнем КЗ);
защита по принципу действия правильно работает при качаниях и асинхронном ходе, что исключает необходимость применения специальной блокировки при качаниях;
защита имеет однотипные органы, действующие на пуск в.ч. передатчика и на отключение, что облегчает согласование по чувствительности указанных органов по сравнению с дистанционной защитой с в.ч. блокировкой, в которой могут использоваться пусковые органы, реагирующие на разные электрические величины и др.
Комплекты ДФЗ – 201 устанавливаем для защиты линий 110 кВ «Падунская – Гидростроитель» 1,2.
Расчёт будем вести для полукомплекта, установленного на подстанции Гидростроитель, в соответствии с указаниями, приведёнными в [11]:
1. Первичный ток срабатывания реле тока 1 − 1РТ, действующего на пуск высокочастотного передатчика, определяется по условию отстройки от максимального рабочего тока по выражению:
, (4.25)
где − коэффициент надёжности;
−коэффициент возврата;
А − максимальный рабочий ток линии (табл. 3.2)
А.
2. Первичный ток срабатывания реле тока 1 − 2РТ, действующего на отключение высокочастотного передатчика, определяется по условию согласования по чувствительности с реле 3РТ по выражению:
, (4.26)
где − коэффициент надёжности.
А.
3. Выбор уставок устройства фильтр-реле пускового органа, состоящего из:
1) реле, действующего на пуск высокочастотного передатчика – пускового реле (1 – 1ПР для панели ДФЗ – 201);
2) реле, действующего на отключение высокочастотного передатчика – отключающее реле (1 – 2ПР для панели ДФЗ – 201).
В целях упрощения расчёта рекомендуется использовать по концам линии трансформаторы тока с одинаковыми коэффициентами трансформации, а так же принимать одинаковые уставки устройства фильтр-реле. В этом случае условие согласования по чувствительности отключающего реле с пусковым реле обеспечивается выбором тока срабатывания отключающего реле, в 2 раза большим тока срабатывания пускового реле при заводской регулировке [11].
В целях упрощения расчётов также рекомендуется не использовать ток нулевой последовательности в пусковом органе. При этом максимальная уставка по току обратной последовательности устройства фильтр-реле пускового органа для панели ДФЗ – 201 принимается равной А [11].
4. Проверка чувствительности реле тока 1 – 2РТ, действующего на отключение высокочастотного передатчика производится по выражению:
, (4.27)
где А − минимальный ток трёхфазного КЗ в конце
защищаемой линии (табл. 3.1);
−первичный ток срабатывания реле тока 1 – 2РТ.
.
Минимальный коэффициент чувствительности должен быть больше 2 [11], то есть реле тока 1 – 2РТ удовлетворяет требованиям чувствительности.
5. Расчёт параметров реле сопротивления 1 – РС, используемого в пусковом органе защиты:
1) Определим первичное минимальное сопротивление в месте установки защиты в максимальном нагрузочном режиме по выражению:
, (4.28)
где кВ − номинальное междуфазное напряжение линии;
А – максимальный рабочий ток линии.
Ом.
2) Определим первичное минимальное сопротивление срабатывания реле 1 – РС по выражению:
, (4.29)
где − коэффициент надёжности;
−коэффициент возврата;
° − угол максимальной чувствительности реле;
° − угол полного сопротивления нагрузки (соответствует
).
Ом.
6. Коэффициент чувствительности реле сопротивления 1–РС определяется по выражению:
, (4.30)
где Ом − сопротивление защищаемой линии.
≥1,5.
Проверим чувствительность реле сопротивления по току точной работы:
, (4.31)
где А − ток точной работы для реле 1 – РС;
−коэффициент трансформации трансформатора тока.
≥1,3.
Реле сопротивления 1–РС пускового органа проходит по чувствительности.
- Содержание
- 3. Расчёт токов короткого замыкания и рабочих
- 6. Составление сметной ведомости на монтаж
- Введение
- 1. Краткий анализ подстанции гидростроитель
- 1.1. Место и назначение подстанции в районной энергосистеме
- 1.2. Основные показатели подстанции
- 1.3. Описание главной схемы электрических силовых цепей
- 2. Выбор основного оборудования подстанции
- 2.1. Выбор мощности и количества силовых трансформаторов
- 2.2. Выбор выключателей и разъединителей на ру 110/35/6 кВ
- 2.3. Выбор трансформаторов собственных нужд
- Расчёт токов короткого замыкания и рабочих токов в объёме, необходимом для релейной защиты
- Определение параметров схемы замещения при 3-х и 2-х фазных коротких замыканиях
- Расчёт токов трёхфазного короткого замыкания
- Расчёт токов двухфазного короткого замыкания
- Расчёт параметров схемы замещения для токов нулевой последовательности
- Расчет утроенного тока нулевой последовательности при однофазном кз
- 3.7. Расчет утроенного тока нулевой последовательности при двухфазном кз на землю
- 3.8. Расчёт токов двухфазного кз на землю
- 3.9. Расчёт рабочих и номинальных токов
- 4. Релейная защита и автоматика
- 4.1. Назначение релейной защиты и автоматики
- 4.2. Выбор объектов защит и их типов
- 4.2.1. Защита силовых трёхобмоточных трансформаторов
- 4.2.2. Защита отходящих линий
- 4.2.3. Устройства автоматики
- 4.3. Защита силовых трёхобмоточных трансформаторов
- 4.3.1. Расчёт параметров срабатывания дифференциальной токовой защиты трансформатора тдтн – 63000/110/38,5/6,6 −у-1 на реле типа дзт – 21
- 4.3.2. Расчёт параметров срабатывания защиты от многофазных коротких замыканий на стороне нн, выполненной в виде максимальной токовой защиты с комбинированным пуском по напряжению
- 4.3.3. Расчёт параметров срабатывания защиты от многофазных коротких замыканий на стороне сн, выполненной в виде максимальной токовой защиты с комбинированным пуском по напряжению
- 4.3.4. Расчёт параметров срабатывания защиты от многофазных коротких замыканий на стороне вн, выполненной в виде максимальной токовой защиты с комбинированным пуском по напряжению
- 4.3.5. Расчёт параметров срабатывания максимальной токовой защиты трансформатора с выдержкой времени от перегрузки
- 4.3.6. Защита от замыкания на землю со стороны низшего напряжения трансформатора
- 4.3.7. Газовая защита
- 4.4. Защита отходящих линий
- 4.4.1. Расчёт дифференциально-фазной высокочастотной защиты
- 4.4.2. Расчёт трёхступенчатых дистанционных защит отходящих линий 110 кВ
- 4.4.3. Расчёт токовых отсечек от междуфазных коротких замыканий
- 4.4.4. Расчёт параметров срабатывания трёхступенчатых токовых защит нулевой последовательности от коротких замыканий на землю
- 4.4.5. Расчёт параметров срабатывания максимальных токовых защит отходящих линий 35 кВ
- 4.5. Применение современных микропроцессорных защит линий электропередачи
- 4.5.1. Общие сведения о микропроцессорных защитах
- 4.5.2. Применение микропроцессорного терминала серии MiCom−124 для защиты линии 35 кВ «Гидростроитель – Осиновка»
- 4.5.3. Расчёт параметров срабатывания трёхступенчатой токовой защиты блока MiCom – 124 и составление файла-конфигурации
- 5. Безопасность жизнедеятельности
- 5.1. Действие электрического тока на организм человека
- 5.2. Условия поражения электрическим током
- 5.3. Классификация электроустановок и помещений в отношении электробезопасности
- 5.4. Основные меры защиты, обеспечивающие безопасность электротехнического персонала и посторонних лиц
- 5.5. Оказание первой помощи при поражении электрическим током
- 6. Составление сметной ведомости на монтаж силового трансформатора и расчёт стоимости аппаратуры релейной защиты
- 6.1. Составление сметой ведомости на монтажные работы по установке силового трансформатора
- 6.2. Расчёт стоимости аппаратуры релейной защиты трансформатора
- Заключение
- Список использованных источников