Лазеры на основе конденсированных сред

контрольная работа

5.1 Принцип действия

В полупроводниковых лазерах, в отличие от лазеров других типов (в том числе и других твёрдотельных), используются излучательные переходы не между изолированными энергетическими уровнями атомов, молекул и ионов, не взаимодействующих или слабо взаимодействующих между собой, а между разрешёнными энергетическими зонами кристалла. Излучение (люминесценция) и генерация вынужденного излучения в полупроводниках обусловлена квантовыми переходами электронов как между энергетическими уровнями зоны проводимости и валентной зоны, так и между уровнями этих зон и примесными уровнями: переходы донорный уровень-акцепторный уровень, зона проводимости - акцепторный уровень, донорный уровень - валентная зона, в том числе и через экситонные состояния. Каждой энергетической зоне соответствует очень большое (~1023-1024) число разрешённых состояний. Поскольку электроны относятся к фермионам; то, например, валентная зона может быть полностью или частично заполнена электронами: с плотностью, убывающей снизу вверх по шкале энергий - подобно распределению Больцмана в атомах.

В основе излучения полупроводников лежит явление электролюминесценции. Фотон испускается в результате акта рекомбинации носителей заряда-электрона и "дырки" (электрон из зоны проводимости занимает вакансию в валентной зоне), при этом длина волны излучения определяется шириной запрещённой зоны. Если создать такие условия, что электрон и дырка перед рекомбинацией будут находиться в одной области пространства достаточно долгое время, и в этот момент через эту область пространства пройдёт фотон с частотой, находящейся в резонансе с частотой квантового перехода, то он может индуцировать процесс рекомбинации с испусканием второго фотона, причём его направление, вектор поляризации и фаза будут в точности совпадать с теми же характеристиками, что и у первого фотона. Например, в собственных ("чистых", "безпримесных") полупроводниках, существует заполненная валентная зона и практически свободная зона проводимости. При межзонных переходах для возникновения инверсии и получения генерации необходимо создать избыточные неравновесные концентрации носителей заряда: в зоне проводимости - электронов, а в валентной зоне дырок. При этом интервал между квазиуровнями Ферми должен превышать ширину запрещённой зоны, т.е. один или оба квазиуровня Ферми будут находиться внутри разрешённых зон на расстояниях не более kT от их границ. А это предполагает возбуждение такой интенсивности, чтобы было создано вырождение в зоне проводимости и в валентной зоне.

Первые полупроводниковые лазеры использовали арсенид галлия (GaAs), работали в импульсном режиме, излучали в ИК диапазоне и требовали интенсивного охлаждения. Дальнейшие исследования позволили внести много существенных улучшений в физику и технику лазеров такого типа, и в настоящее время они излучают и в видимом, и в УФ диапазонах.

Вырождение полупроводника достигается путём его сильного легирования при высокой концентрации примеси, такой, что проявляются в основном свойства примеси, а не свойства собственного полупроводника. Каждый атом донорной примеси отдаёт в зону проводимости кристалла один из своих электронов. Напротив, атом акцепторной примеси захватывает один электрон, который был обобществлен кристаллом и находился в валентной зоне. Вырожденный n_полупроводник получается, например, при внесении в GaAs примеси теллура (концентрация 3-5·1018 см3), а вырожденный p_полупроводник - примеси цинка (концентрация 1019 см3). Генерация осуществляется на ИК длинах волн от 0,82 мкм до 0,9 мкм. Распространены и структуры, выращенные на подложках InP (ИК область л1-3 мкм).

Полупроводниковый кристалл простейшего лазерного диода, работающего на "гомопереходе" (рис. 10), имеет вид очень тонкой прямоугольной пластинки. Такая пластинка по сути является оптическим волноводом, где распространяется излучение. Верхний слой кристалла легируется для создания p_области, а в нижнем слое создаётся n_область. В результате получается плоский p_n переход большой площади. Две боковые стороны (торцы) кристалла скалывают и полируют для образования гладких параллельных отражающих плоскостей, которые образуют открытый оптический резонатор-интерферометр Фабри-Перо. Случайный фотон спонтанного излучения, испущенный в плоскости p_n перехода перпендикулярно отражателям, проходя вдоль резонатора, будет вызывать вынужденные рекомбинационные переходы, создавая новые и новые фотоны с теми же параметрами, т.е. излучение будет усиливаться, начнётся генерация. При этом лазерный луч будет формироваться за счёт неоднократного прохода по оптическому волноводу и отражения от торцов.

Рис. 10. Схема устройства полупроводникового инжекционного лазера (лазерного диода)

Важнейшим видом накачки в полупроводниковых лазерах является инжекционная накачка. При этом активными частицами служат свободные носители заряда - избыточные неравновесные электроны проводимости и дырки, которые инжектируются в p-n-переход (активную среду), при пропускании через него электрического тока в "прямом" направлении при "прямом" смещении, уменьшающем высоту потенциального барьера. Это позволяет осуществить непосредственное преобразование электрической энергии (тока) в когерентное излучение.

Другими способами накачки служат электрический пробой (в т. наз. стримерных лазерах), накачка пучком электронов и оптическая накачка.

Делись добром ;)