Ремонт та обслуговування електроустаткування

курсовая работа

2.3 Призначення, будова, монтаж та технічне обслуговування силового електроустаткування

До силового електроустаткування відносять:

Електричні машини; Трансформатори; Випрямлячі.

Електричні машини.

Електричні машини широко застосовують на електричних станціях, у промисловості, на транспорті, в авіації, в системах автоматичного регулювання та керування, у побуті. Вони перетворюють механічну енергію в електричну і, навпаки, електричну енергію в механічну. Машина, що перетворює механічну енергію в електричну, називається генератором. Перетворення електричної енергії в механічну здійснюється двигуном.

Будь-яку електричну машину можна використати як генератор і як двигун. Ця її властивість змінювати напрямок перетворюваної енергії називається оборотністю машини, її можна також використати для перетворення електричної енергії одного роду струму (частоти, кількості фаз змінного струму, напруги постійного струму) в енергію іншого роду струму. Такі електричні машини називаються перетворювачами.

Електричні машини залежно від роду струму електроустановки, в якій вони мають працювати, поділяються на машини постійного і машини змінного струму. Машини змінного струму можуть бути одно та багатофазними. Найширше застосовуються трифазні синхронні та асинхронні машини, а також колекторні машини змінного струму, які дають змогу здійснювати економічне регулювання частоти обертання в широких межах.

Найпоширенішим з електричних двигунів є трифазний асинхронний двигун, вперше сконструйований відомим російським електриком М.О. Доліво-Добровольським.

Асинхронний двигун відзначається простотою конструкції та нескладністю обслуговування. Як і будь-яка машина змінного струму, асинхронний двигун складається з двох основних частин - статора і ротора. Статором називається нерухома частина машини, ротором - її обертова частина. Властивістю асинхронної машини є її оборотність, тобто вона може бути використана в режимі генератора і в режимі двигуна. Через ряд суттєвих недоліків асинхронні генератори майже не застосовуються, в той час як асинхронні двигуни набули великого поширення.

Двигун постійного струму (ДПТ)

Машини постійного струму застосовують як електродвигунів і генераторів. Електродвигуни постійного струму мають хороші регулювальні властивості, значну перевантажувальну здатність і дозволяють отримувати жорсткі і мякі механічні характеристики.

Призначення. Такі машини широко використовують для приводу різних механізмів у чорній металургії (прокатні стани, кантувателі, роликові транспортери), на транспорті (електровози, тепловози, електропоїзди, електромобілі), у вантажопідйомних і землекопальних пристроях (крани, шахтні підйомники, екскаватори), на морських і річкових суднах, у металообробній, паперової, текстильної, поліграфічної промисловості та ін Двигуни невеликої потужності застосовують у багатьох системах автоматики.

Конструкція двигунів постійного струму складніше і їх вартість вище, ніж асинхронних двигунів. Однак у звязку з широким застосуванням автоматизованого електроприводу та тиристорних перетворювачів, що

дозволяють живити електродвигуни постійного струму регульованою напругою від мережі змінного струму, ці електродвигуни широко використовують у різних галузях народного господарства.

Генератори постійного струму раніше широко використовувалися для живлення електродвигунів постійного струму в стаціонарних і пересувних установках, а також як джерела електричної енергії для заряду акумуляторних батарей, харчування електролізних і гальванічних ванн, для електропостачання різних електричних споживачів на автомобілях, літаках, пасажирських вагонах, електровозах, тепловозах та ін

Недолік машин постійного струму - наявність щеточноколлекторного апарату, який вимагає ретельного догляду в експлуатації і знижує надійність роботи машини.

Тому останнім часом генератори постійного струму в стаціонарних установках витісняються напівпровідниковими перетворювачами, а на транспорті - синхронними генераторами, які працюють спільно з напівпровідниковими випрямлячами.

Мал. 2.2 Електромагнітна схема двополюсної машини постійного струму (а) та еквівалентна схема її обмотки якоря (б): 1 - обмотка збудження; 2-головні полюси, 3 - якір; 4-обмотка якоря; 5 - щітки; 6 - корпус (станина)

Мал. 2.3. Будова електродвигуна постійного струму: 1 - станина, 2 - головний полюс, 3 - обмотка збудження, 4 - полюсний наконечник, 5 - додатковий полюс, 6 - обмотка додаткового полюса, 7 - провідники компенсаційної обмотки, 8 - повітряний зазор, 9 - магнітопровід якоря, 10 - провідники обмотки якоря, 11 - щітка, 12 - вал, 13 - колектор, 14 - лапа.

Принцип дії. Машина постійного струму (Мал. 2.2, а) має обмотку збудження, розташовану на явно виражених полюсах статора. З цієї обмотці проходить постійний струм Iв, створює магнітне поле збудження Фв. На роторі розташована двошарова обмотка, в якій при обертанні ротора індукується ЕРС. Таким чином, ротор машини постійного струму є якорем, а конструкція машини подібна з конструкцією зверненої синхронної машини.

При заданому напрямку обертання якоря напрям ЕРС, индуцируемой в його провідниках, залежить тільки від того, під яким полюсом знаходиться провідник. Тому у всіх провідниках, розташованих під одним полюсом, напрям ЕРС однакове і зберігається таким незалежно від частоти обертання. Іншими словами, характер кривої, що відображає напрямок ЕРС на Мал. 2.2, а, нерухомий у часі: в провідниках, розташованих вище горизонтальної осі симетрії, яка розділяє полюси (геометрична нейтраль), ЕРС завжди спрямована в один бік; в провідниках, що лежать нижче геометричній нейтралі, - в протилежну сторону.

При обертанні якоря провідники обмотки переміщуються від одного полюса до іншого; ЕРС, індукована в них, змінює знак, тобто в кожному провіднику наводять змінна ЕРС. Однак кількість провідників, що знаходяться під кожним полюсом, залишається незмінним. При цьому сумарна ЕРС, індукована в провідниках, що знаходяться під одним полюсом, також незмінна за напрямом і приблизно постійна за величиною. Ця ЕРС знімається з обмотки якоря за допомогою ковзного контакту, включеного між обмотками і зовнішньої ланцюгом.

Обмотка якоря виконується замкнутої, симетричною (Мал. 2.2, б). При відсутності зовнішнього навантаження струм по обмотці не проходить, тому що ЕРС, індуковані в різних частинах обмотки, взаємно компенсуються.

Якщо щітки, здійснюють ковзний контакт з обмоткою якоря, розташувати на геометричній нейтралі, то за відсутності зовнішнього навантаження до щіток прикладається напруга U, рівне ЕРС Е, індукованої в кожної з половин обмоток. Ця напруга практично незмінно, хоча і має деяку змінну складову, обумовлену зміною положення провідників у просторі. При великій кількості провідників пульсації напруги досить незначні.

Секція - основний елемент обмотки якоря з одного або декількох послідовно зєднаних витків, початок і кінець яких припаяні до двох колекторним пластин, в результаті чого кінець однієї секції і початок наступного приєднані до однієї і тієї ж колекторної пластини.

Мал. 2.4. Одне і двовитковий обмотки якоря електродвигунів постійного струму: а - петлевий, б - хвильової

Мал. 2.5. Зєднання секцій обмоток якоря електродвигунів постійного струму: а - петлевий, б - хвильової

Синхронні машини

Призначення. Синхронні машини використовують головним чином як джерел електричної енергії змінного струму; їх встановлюють на потужних теплових, гідравлічних і атомних електростанціях, а також на пересувних електростанціях і транспортних установках (тепловозах, автомобілях, літаках). Конструкція синхронного генератора визначається в основному типом приводу. Залежно від цього розрізняють турбогенератори, гідрогенератори і дизель-генератори. Турбогенератори приводяться в обертання паровими або газовими турбінами, гідрогенератори-гідротурбінами, дизель-генератори - двигунами внутрішнього згоряння. Синхронні машини широко використовують і як електродвигунів при потужності 100 кВт і вище для приводу насосів, компресорів, вентиляторів та інших механізмів, що працюють при постійній частоті обертання. Для генерування або споживання реактивної потужності з метою поліпшення коефіцієнта потужності мережі і регулювання її напруги застосовують синхронні компенсатори.

У електропобутових приладах (магнітофонах, програвачах, кіноапаратура) і системах управління широко застосовуються різні синхронні мікромашини з постійними магнітами, індукторні, реактивні, гістерезисні, крокові.

Принцип дії. Статор 1 синхронної машини (Мал.2.6, а) виконаний так само, як і асинхронної: на ньому розташована трифазна (у загальному випадку багатофазна) обмотка 3. Обмотку ротора 4, яка живиться від джерела постійного струму, називають обмоткою збудження, так як вона створює в машині магнітний потік збудження.

Мал. 2.6. Електромагнітна схема синхронної машини (а) і схема її включення (б): 1 - статор, 2 - ротор, 3-обмотка якоря, 4 - обмотка збудження, 5 - контактні кільця, 6 - щітки

Обертову обмотку ротора зєднують із зовнішнім джерелом постійного струму за допомогою контактних кілець 5 і щіток 6. При обертанні ротора 2 з певною частотою n2 потік порушення перетинає провідники обмотки статора і індукує у її фазах змінну е. д. с. E (Мал.2.6, б), що змінюється з частотою

f1 = pn2/60 (1.1)

Якщо обмотку статора підключити до будь-якої навантаженні, то протікає по цій обмотці багатофазних струм Ia створить обертове магнітне поле, частота обертання якого

n1 = 60f1/p. (1.2)

З (1.1) і (1.2) випливає, що n1 = n2, тобто ротор обертається з тією ж частотою, що і магнітне поле статора. З цієї причини розглянуту машину називають синхронної. У такій машині результуючий магнітний потік Фрези створюється спільною дією м. д. с. обмотки збудження і обмотки статора і результуюче магнітне поле обертається в просторі з тією ж частотою, що і ротор.

У синхронній машині обмотку, в якій індукується е. д. с. і протікає струм навантаження, називають обмоткою якоря, а частина машини, на якій розташована обмотка збудження, - індуктором. Отже, в машині, виконаної за конструктивною схемою, представленої на Мал.2.6, статор є якорем, а ротор - індуктором. З точки зору принципу дії і теорії роботи машини байдуже, обертається якір або індуктор, тому в деяких випадках застосовують синхронні машини з зверненої конструктивною схемою: обмотка якоря, до якої підключена навантаження, розташована на роторі, а обмотка збудження, що живиться постійним струмом, - на статорі.

Синхронна машина може працювати автономно як генератор, який живить підключену до неї навантаження, або паралельно з мережею, до якої приєднані інші генератори. При роботі паралельно з мережею вона може віддавати або споживати електричну енергію, тобто працювати

Будова синхронної машини. Конструктивна схема машини. Синхронні машини виконують з нерухомим чи обертовим якорем. Машини великої потужності для зручності відведення електричної енергії зі статора або підведення її виконують з нерухомим якорем (Мал.2.7, а)

Оскільки потужність збудження невелика в порівнянні з потужністю, що знімається з якоря (0,3-3%), підвід постійного струму до обмотки збудження за допомогою двох кілець не викликає особливих труднощів. Синхронні машини невеликої потужності виконують як з нерухомим, так і з обертовим якорем.

Мал. 2.7. Конструктивна схема синхронної машини з нерухомим і обертовим якорем: 1 - якір, 2 - обмотка якоря, 3 - полюси індуктора, 4 - обмотка збудження, 5 - кільця та щітки

Синхронну, машину з обертовим якорем і нерухомим індуктором (Мал. 2.7, б) називають зверненої.

Мал. 2.8. Ротори синхронної явнополюсной (а) і неявнополюсной (6) машин: 1 - сердечник ротора, 2 - обмотка збудження

Конструкція ротора. У машині з нерухомим якорем застосовують дві конструкції ротора: явно полюсну - з явно вираженими полюсами (Мал.2.8, а) і неявно полюсну - з неявно вираженими полюсами (Мал.2.8, б). Явно полюсний ротор зазвичай використовують у машинах з чотирма і великим числом полюсів. Обмотку збудження виконують у цьому випадку у вигляді циліндричних котушок прямокутного перерізу, які розміщують на сердечниках полюсів і зміцнюють за допомогою полюсних наконечників. Ротор, сердечники полюсів і полюсні наконечники виготовляють зі сталі. Дво- та чотирьохполюсних машини великої потужності, що працюють при частоті обертання ротора 1500 і 3000 об / хв, виготовляють, як правило, з неявнополюсним ротором. Застосування в них явнополюсного ротора неможливо за умовами забезпечення необхідної механічної міцності кріплення полюсів і обмотки збудження. Обмотку збудження в такій машині розміщують в пазах осердя ротора, виконаного з масивної сталевої поковки, і зміцнюють немагнітними клинами. Лобові частини обмотки, на які впливають значні відцентрові сили, кріплять за допомогою сталевих масивних бандажів. Для отримання розподілу магнітної індукції, близького до синусоїдальної, обмотку збудження укладають в пази, що займають 2/3 кожного полюсного поділу.

Мал. 2.9. Пристрій явнополюсной машини: 1 - корпус, 2 - сердечник статора, 3 - обмотка статора, 4 - ротор, 5 - вентилятор, 6 - висновки обмотки статора, 7 - контактні кільця, 8 - щітки, 9 - збудник

На Мал.2.9 показано пристрій явнополюсной синхронної машини. Сердечник статора зібраний з ізольованих листів електротехнічної сталі і на ньому розташована трифазна обмотка якоря. На роторі розміщена обмотка збудження.

Полюсним наконечникам в явнополюсних машинах зазвичай надають такий профіль, щоб повітряний зазор між полюсним наконечником і статором був мінімальним під серединою полюса і максимальним у його країв, завдяки чому крива розподілу індукції в повітряному зазорі наближається до синусоїди.

У синхронних двигунах з явнополюсним ротором в полюсних наконечниках розміщують стрижні пускової обмотки, виконаній з матеріалу з підвищеним питомим опором (латуні та ін.) Таку ж обмотку (типу "біляча клітина"), що складається з мідних стрижнів, застосовують і в синхронних генераторах; її називають заспокійливої або демпферного обмоткою, так як вона забезпечує швидке загасання коливань ротора, що виникають при перехідних режимах роботи синхронної машини. Якщо синхронна машина виконана з масивними полюсами, то в цих полюсах при пуску і перехідних режимах виникають вихрові струми, дія яких еквівалентно дії струму в короткозамкну-тихобмотках. Згасання коливань ротора при перехідних процесах забезпечується в цьому випадку вихровими струмами, що замикаються в масивному роторі.

Асинхронні машини

Асинхронні машини - найбільш поширені електричні машини. В основному вони використовуються як електродвигуни і є основними перетворювачами електричної енергії в механічну.

Призначення. В даний час асинхронні машини використовуються в основному в режимі двигуна. Машини потужністю більше 0.5 кВт зазвичай виконуються трифазними, а при меншій потужності - однофазними.

Вперше конструкція трифазного асинхронного двигуна була розроблена, створена і випробувана нашим російським інженером М.О. Доліво-Добровольським у 1889-91 роках. Демонстрація першого двигунів відбулася на Міжнародній електротехнічній виставці у Франкфурті на Майні у вересні 1891 року. На виставці було представлено три трифазних двигуна різної потужності. Найпотужніший з них мав потужність 1.5кВт і використовувався для приведення в обертання генератора постійного струму. Конструкція асинхронного двигуна, запропонована Доліво-Добровольським, виявилася дуже вдалою і є основним видом конструкції цих двигунів до теперішнього часу.

За минулі роки асинхронні двигуни знайшли дуже широке застосування в різних галузях промисловості і сільського господарства. Їх використовують

в електроприводі металорізальних верстатів, підйомно-транспортних машин, транспортерів, насосів, вентиляторів. Малопотужні двигуни використовуються в пристроях автоматики.

Широке застосування асинхронних двигунів пояснюється їх перевагами в порівнянні з іншими двигунами: висока надійність, можливість роботи безпосередньо від мережі змінного струму, простота обслуговування.

Принцип дії. У асинхронної машині одну з обмоток розміщують на статорі 1 (Мал.2.10, а), а другу - на роторі 3. Між ротором і статором є повітряний зазор, який для поліпшення магнітного звязку між обмотками роблять по можливості малим. Обмотка статора 2 являє собою трифазну (або в загальному випадку багатофазну) обмотку, котушки якої розміщують рівномірно по окружності статора. Фази обмотки статора АХ, BY і CZ зєднують за схемою Х або Д і підключають до мережі трифазного струму (Мал.2.10,6). Обмотку ротора 4 виконують трифазної або багатофазної і розміщують рівномірно уздовж окружності ротора. Фази її в простому випадку замикають накоротко.

Мал. 2.10. Електромагнітна схема асинхронної машини (а) та напрямки струмів та електромагнітного моменту при роботі її в руховому режимі (б)

При харчуванні обмотки статора трифазним струмом створюється обертове магнітне поле, частота обертання якого (синхронна)

N1 = 60ѓ1/p

Якщо ротор нерухомий або частота його обертання менше синхронної, то обертове магнітне поле перетинає провідники обмотки ротора і індукує в них ЕРС. На Мал.2.10, а показано, згідно з правилом правої руки, напрям ЕРС, індукованої в провідниках ротора при обертанні магнітного потоку Ц за годинниковою стрілкою, при цьому провідники ротора переміщаються щодо потоку Ц проти годинникової стрілки. Активна складова струму ротора співпадає по фазі з індукованою ЕРС, тому умовні позначення (хрестики і точки) на Мал. 2.10 показують одночасно і напрямок активної складової струму.

На провідники зі струмом, розташовані в магнітному полі, діють електромагнітні сили, напрямок яких визначається правилом лівої руки. Сумарна зусилля Fpeз, прикладена до всіх провідникам ротора, утворює електромагнітний момент М, захопливий ротор за обертовим магнітним полем. Якщо цей момент досить великий, то ротор приходить у обертання і його встановилася частота обертання п2 відповідає рівності електромагнітного моменту гальмівного.

Мал. 2.11. Електромагнітна схема асинхронної машини, напрями струмів та електромагнітного моменту при роботі її в режимах: генераторному (а) і електромагнітного гальмування (б)

Якщо змінити напрямок обертання ротора (або магнітного поля) так, щоб магнітне поле і ротор оберталися в протилежних напрямках (Мал.2.11, б), то ЕРС та активна складова струму в провідниках ротора будуть направлені так само, як у руховому режимі, т. тобто машина буде одержувати з мережі активну потужність. Проте в даному режимі електромагнітний момент М спрямований проти обертання ротора, тобто є гальмівним. Цей режим роботи асинхронної машини називають режимом електромагнітного гальмування. Так як ротор обертається в зворотному напрямку (щодо направлення магнітного поля), то п2 <0, as> 1.

Будова трифазної асинхронної машини. Нерухома частина машини називається статор, рухлива - ротор. Сердечник статора набирається з листової електротехнічної сталі і запресовується в станину. На Мал.2.12 показаний сердечник статора в зборі. Станина (1) виконується литий, з немагнітного матеріалу. Найчастіше станину виконують з чавуну або алюмінію. На внутрішній поверхні листів (2), з яких виконується сердечник статора, є пази, в які закладається трифазна обмотка (3). Обмотка статора виконується в основному з ізольованого мідного дроту круглого або прямокутного перерізу, рідше - з алюмінію.

Обмотка статора складається з трьох окремих частин, які називаються фазами. Почала фаз позначаються літерами с1, с2, с3, кінці - с4, С5, С6.

Мал. 2.12 Статор

Початки і кінці фаз виведені на клемник (Мал.2.12 а), закріплений на станині. Обмотка статора може бути зєднана за схемою зірка (Мал.2.12 б) або трикутник (Мал.2.12 в). Вибір схеми зєднання обмотки статора залежить від лінійного напруги мережі і паспортних даних двигуна. У паспорті трифазного двигуна задаються лінійні напруги мережі і схема зєднання обмотки статора. Наприклад, 660/380, Y / Д. Даний двигун можна включати в мережу з Uл = 660В за схемою зірка або в мережу з Uл = 380В - за схемою трикутник.

Основне призначення обмотки статора - створення в машині обертаючого магнітного поля.

Мал. 2.12 Типи зєднань

Сердечник ротора (Мал.2.13 б) набирається з листів електротехнічної сталі, на зовнішній стороні яких є пази, в які закладається обмотка ротора. Обмотка ротора буває двох видів: короткозамкнена і фазна. Відповідно до цього асинхронні двигуни бувають з короткозамкненим ротором і фазним ротором (з контактними кільцями).

Мал. 2.13 Ротор

Короткозамкнена обмотка (Мал. 2.13) ротора складається зі стрижнів 3, які закладаються в пази сердечника ротора. З торців ці стрижні замикаються торцевими кільцями 4. Така обмотка нагадує "біляче колесо"і називають її типу "білячою клітини " (Мал.2.13 а). Двигун з короткозамкненим ротором не має рухомих контактів. За рахунок цього такі двигуни мають високу надійність. Обмотка ротора виконується з міді, алюмінію, латуні та інших матеріалів.

Доліво-Добровольський першим створив двигун з короткозамкненим ротором і досліджував його властивості. Він зясував, що у таких двигунів є дуже серйозний недолік - обмежений пусковий момент. Доліво-Добровольський назвав причину цього недоліку - сильно закороченому ротор. Їм же була запропонована конструкція двигуна з фазним ротором.

Мал. 2.14

На Мал.2.14 приведений вид асинхронної машини з фазним ротором в розрізі: 1 - станина, 2 - обмотка статора, 3 - ротор, 4 - контактні кільця, 5 - щітки.

У фазного ротора обмотка виконується трифазної, аналогічно обмотці статора, з тим же числом пар полюсів. Витки обмотки закладаються в пази сердечника ротора і зєднуються за схемою зірка. Кінці кожної фази зєднуються з контактними кільцями, закріпленими на валу ротора, і через щітки виводяться в зовнішній ланцюг. Контактні кільця виготовляють з латуні або сталі, вони повинні бути ізольовані один від одного і від валу. Як щіток використовують металлографітові щітки, які притискаються до контактних кілець за допомогою пружин щіткотримачів, закріплених нерухомо в корпусі машини. На Мал.2.15 наведено умовне позначення асинхронного двигуна з короткозамкненим (а) і фазним (б) ротором.

Мал. 2.15

Мал. 2.16

На Мал.2.16 приведений вид асинхронної машини з короткозамкненим ротором в розрізі: 1 - станина, 2 - сердечник статора, 3 - обмотка статора, 4 - сердечник ротора з короткозамкненою обмоткою, 5 - вал.

Призначення, будова і принцип дії трансформатора

Трансформатор - статичний електромагнітний пристрій із двома або більшим числом індуктивне звязаних обмоток, який служить для перетворення за допомогою електромагнітної індукції змінного струму однієї напруги в змінний струм іншої напруги. За призначенням трансформатори поділяються на силові, узгоджувальні та імпульсні.

Силові трансформатори призначені для перетворення електричної енергії в електричних мережах та в установках для її приймання і використання.

Потужні силові трансформатори встановлюють на електростанціях для підвищення електричної енергії генераторів.

Передача електроенергії по лінії електропередачі високою напругою і малими струмами значно зменшує втрати потужності, що дає можливість зменшити переріз проводів та істотно знизити витрати кольорового металу.

У кінці лінії електропередачі встановлюють трансформатори, які знижують напругу до рівня, необхідного для розподілу її між великими споживачами (міста, населені пункти, промислові підприємства, цехи підприємств та ін.).

У місцях споживання електроенергії встановлюють трансформатори, які знижують напругу до експлуатаційної. Більшість споживачів працюють при напрузі 220.380 і 660 В.

Мал. 2.17. Силовий трансформатор: 1 - магнітопровід трансформатора 2 - обмотка нижчої напруги ні (двошарова циліндрична) 3-обмотка вищої напруги ВН (безперервна) 4 - бак для масла 5 - розширювач б - маслоуказателе 7 - пробка для заливки масла, 8-переілючатель числа витків обмотки ВН 9 - привід перемикача 10 - введення ВН 11 - введення НН 12-термометр 13 - пробка для спуску масла

Отже, електроенергія, яка передається від електростанції до електроприймачів, трансформується декілька разів. Спочатку підвищується, а потім знижується.

Трансформатори, призначені для підвищення напруги, називаються підвищувальними, а трансформатори, призначені для зниження напруги, - знижувальними.

Трансформатори широко використовують у радіо - і телеапаратурі, у вимірювальних пристроях, місцевому освітленні тощо.

Трансформатори, які використовуються для узгодження напруги або опорів між каскадами в радіопристроях, називаються у згоджувальними.

Трансформатори, призначені для передачі імпульсів напруги або струмів з однієї мережі в іншу називаються імпульсними. Вони широко використовуються в імпульсній техніці.

Конструкція трансформатора залежить від його габаритів, які, в свою чергу, залежать від номінальної потужності трансформатора.

Залежно від потужності трансформатори випускають з природним охолодженням і масляним. Активні частини трансформаторів у потужних енергетичних установках занурюють в мінеральне трансформаторне масло для кращого відведення тепла і поліпшення ізоляції.

Мал. 2.18 Будова однофазного трансформатора: а) - стержньовий; б) - броньовий 1 - стержень; 2 - вторинна обмотка; 3 - первинна обмотка;

Трансформатори малої потужності випускають з повітряним охолодженням. Основні частини трансформатора - магнітопровід та обмотки.

Магнітопровід складається з тонких листів електротехнічної сталі, легованої кремнієм, які ізольовані один від одного лаком, папером або окалиною. Це потрібно для зменшення втрат у сталі на перемагнічування та нагрівання вихровими струмами.

Делись добром ;)