logo
Методы определения элементарного электрического заряда

3.2.1. Краткая биография:

Роберт Милликен родился в 1868 г. в штате Иллинойс в бедной семье священника. Детство его прошло в провинциальном городке Маквокета, где много внимания уделяли спорту и плохо учили. Директор средней школы, преподававший физику, говорил, к примеру, своим юным слушателям: «Как это можно из волн сделать звук? Ерунда, мальчики, все это ерунда!»

В Обердинском колледже было не лучше, но Милликену, не имевшему материальной поддержки, пришлось самому преподавать физику в средней школе. В Америке тогда было всего два учебника по физике, переведенные с французского, и талантливому юноше не представило трудностей изучить их и с успехом вести занятия. В 1893 г. он поступает в Колумбийский университет, затем едет учиться в Германию.

Милликену было 28 лет, когда он получил предложение от А. Майкельсона занять место ассистента в Чикагском университете. В начале он занимался здесь почти исключительно педагогической работой и только в сорок лет начал научные исследования, принесшие ему мировую славу.

3.2.2. Первые опыты и решения проблем:

Первые опыты сводились к следующему. Между пластинками плоского конденсатора, на которые подавалось напряжение в 4000 В, создавалось облако, состоявшее из капелек воды, осевших на ионах. Сначала наблюдалось падение вершины облака в отсутствие электрического поля. Затем создавалось облако при включенном напряжении. Падение облака происходило под действием силы тяготения и электрической силы.
Отношение силы, действующей на каплю в облаке, к скорости, которую она приобретает, одинаково в первом и во втором случае. В первом случае сила равна mg, во втором mg+qE, где q -- заряд капли, Е -- напряженность электрического поля. Если скорость в первом случае равна х1 во втором х2, то

Зная зависимость скорости падения облака х от вязкости воздуха, можно вычислить искомый заряд q. Однако этот метод не давал желаемой точности, потому что содержал гипотетические допущения, не поддающиеся контролю экспериментатора.

Чтобы увеличить точность измерений, необходимо было прежде всего найти способ учета испарения облака, которое неизбежно происходило в процессе измерения.

Размышляя над этой проблемой, Милликен и пришел к классическому методу капель, открывшему целый ряд неожиданных возможностей. Историю изобретения предоставим рассказать самому автору:
«Сознавая, что быстрота испарения капель оставалась неизвестной, я попытался придумать способ, который вполне исключил бы эту неопределенную величину. Мой план состоял в следующем. В предыдущих опытах электрическое поле могло только немного увеличить или уменьшить скорость падения верхушки облака под действием силы тяжести. Теперь же я хотел это поле усилить настолько, чтобы верхняя поверхность облака оставалась на постоянной высоте. В этом случае явилась возможность с точностью определить скорость испарения облака и принять ее в расчет при вычислениях».

Для реализации этой идеи Милликен сконструировал небольшую по габаритам аккумуляторную батарею, дававшую напряжение до 104 В (для того времени это было выдающимся достижением экспериментатора). Она должна была создавать поле, достаточно сильное, чтобы облако удерживалось, как «гроб Магомета», в подвешенном состоянии. «Когда у меня все было готово,-- рассказывает Милликен, и когда образовалось облако, я повернул выключатель, и облако оказалось в электрическом поле. И в это мгновение оно на моих глазах растаяло, другими словами, от целого облака не осталось и маленького кусочка, который можно было бы наблюдать при помощи контрольного оптического прибора, как это делал Вильсон и собирался делать я. Как мне сначала показалось, бесследное исчезновение облака в электрическом поле между верхней и нижней пластинками означало, что эксперимент закончился безрезультатно...» Однако, как это нередко бывало в истории науки, неудача породила новую идею. Она и привела к знаменитому методу капель. «Повторные опыты,-- пишет Милликен,-- показали, что после рассеивания облака в мощном электрическом поле на его месте можно было различить несколько отдельных водяных капель» (подчеркнуто мною.-- В. Д.). «Неудачный» опыт привел к открытию возможности удерживать в равновесии и наблюдать отдельные капельки в течение достаточно длительного времени.

Но за время наблюдения масса капли воды существенно изменилась в результате испарения, и Милликен после многодневных поисков перешел к экспериментам с каплями масла.

Процедура эксперимента оказалась простой. Адиабатическим расширением между пластинами конденсатора образуется облако. Оно состоит из капелек, имеющих различные по модулю и знаку заряды. При включении электрического поля капли, имеющие заряды, одноименные с зарядом верхней пластины конденсатора, быстро падают, а капли с противоположным зарядом притягиваются верхней пластиной. Но некоторое число капель имеет такой заряд, что сила тяжести уравновешивается электрической силой.

Через 7 или 8 мин. облако рассеивается, и в поле зрения остается небольшое число капель, заряд которых соответствует указанному равновесию сил.

Милликен наблюдал эти капли в виде отчетливых ярких точек. «История этих капель протекает обыкновенно так,-- пишет он.-- В случае небольшого преобладания силы тяжести над силой поля они начинают медленно падать, но, так как они постепенно испаряются, то их нисходящее движение вскоре прекращается, и они на довольно долгое время становятся неподвижными. Затем поле начинает преобладать, и капли начинают медленно подниматься. Под конец их жизни в пространстве между пластинами это восходящее движение становится весьма сильно ускоренным, и они притягиваются с большой скоростью к верхней пластине».

3.2.3. Описание установки:

Схема установки Милликена, с помощью которой в 1909 г. были получены решающие результаты, изображена на рисунке 17.

В камере С был помещен плоский конденсатор из круглых латунных пластин М и N диаметром 22 см (расстояние между ними было 1,6 см). В центре верхней пластины было сделано маленькое отверстие р, сквозь которое проходили капли масла. Последние образовывались при вдувании струи масла с помощью распылителя. Воздух при этом предварительно очищался от пыли путем пропускания через трубу со стеклянной ватой. Капли масла имели диаметр порядка 10-4 см.

От аккумуляторной батареи В на пластины конденсатора подавалось напряжение 104 В. С помощью переключателя можно было закорачивать пластины и этим разрушат электрическое поле.

Капли масла, попадавшие между пластинами М и N, освещались сильным источником. Перпендикулярно направлению лучей через зрительную трубу наблюдалось поведение капель.

Ионы, необходимые для конденсации капель, создавались излучением кусочка радия массой 200 мг, расположенного на расстоянии от 3 до 10 см сбоку от пластин.

С помощью специального устройства опусканием поршня производилось расширение газа. Через 1 - 2 с после расширения радий удалялся или заслонялся свинцовым экраном. Затем включалось электрическое поле и начиналось наблюдение капель в.зрительную трубу. Труба имела шкалу, по которой можно было отсчитывать путь, пройденный каплей за определенный промежуток времени. Время фиксировалось по точным часам с арретиром.

В процессе наблюдений Милликен обнаружил явление, послужившее ключом ко всей серии последующих точных измерений отдельных элементарных зарядов.

«Работая над взвешенными каплями,-- пишет Милликен,-- я несколько раз забывал закрывать их от лучей радия. Тогда мне случалось замечать, что время от времени одна из капель внезапно изменяла свой заряд и начинала двигаться вдоль поля или против него, очевидно, захватив в первом случае положительный, а во втором случае отрицательный ион. Это открывало возможность измерять с достоверностью не только заряды отдельных капель, как это я делал до тех пор, но и заряд отдельного атмосферного иона.

В самом деле, измеряя скорость одной и той же капли два раза, один раз до, а второй раз после захвата иона, я, очевидно, мог совершенно исключить свойства капли и свойства среды и оперировать с величиной, пропорциональной только заряду захваченного иона».