logo
Електронна мікроскопія

1. Зародження електронної оптики

Зародження електронної оптики повязане із створенням в кінці 19 століття електронно-променевої трубки. У першій осцилографічній електронно-променевій трубці (німецький фізик К.Ф. Браун, 1897 р.) електронний пучок відхилявся магнітним полем. Відхилення заряджених частинок електростатичним полем разом з магнітним використовував англійський фізик Дж. Дж. Томсон в дослідах по визначенню відношення заряду електрона до його маси, пропускаючи пучок між пластинами плоского конденсатора, поміщеного усередині електронно-променевої трубки. У 1899 році німецький фізик І.Э. Віхерт застосував для фокусування електронного пучка в електронно-променевій трубці магнітне поле котушки із струмом. Проте лише в 1926 році німецький учений X. Буш теоретично розглянув рух заряджених частинок в магнітному полі такої котушки і показав, що вона придатна для отримання правильних електронно-оптичних зображень і, отже, є електронною лінзою. Подальша розробка електронних лінз (магнітних і електростатичних) відкрила шлях до створення електронного мікроскопа, електронно-оптичного перетворювача і інших приладів, в яких формуються електронно-оптичне зображення обєктів, що випускають електрони, або тим або іншим чином впливають на електронні пучки. Конструювання спеціальної електронно-променевої трубки для телевізійної і радіолокаційної апаратури, для запису, зберігання і відтворення інформації і т.д. привело до подальшого розвитку розділів електронної оптики, повязаних з управлінням пучками заряджених частинок. Значний вплив на розвиток електронної оптики зробила розробка апаратури для аналізу потоків електронів (бета-спектрометрів і інших аналітичних приладів).

Електронна мікроскопія - сукупність методів дослідження за допомогою електронних мікроскопів мікроструктур тіл (аж до атомно-молекулярного рівня), їх локального складу і локалізованих на поверхнях або в мікрообємах тіл електричних і магнітних полів («мікрополів»). Електронна мікроскопія включає також удосконалення і розробку нових електронних мікроскопів і інших корпускулярних мікроскопів (напр., протонного мікроскопа) і приставок до них; розробку методик підготовки зразків, досліджуваних в електронних мікроскопах; вивчення механізмів формування електронно-оптичних зображень; розробку способів аналізу одержуваної інформації.

Обєкти дослідження в електронній мікроскопії - звичайно тверді тіла. У просвічуючих електронних мікроскопах електрони з енергіями від 1 кеВ до 5 МеВ проходять крізь обєкт, тому вивчаються зразки у вигляді тонких плівок, фольги, зрізів і т.д. товщиною від 1 нм (від 10 ? до 105 ?). Мікрокристали, порошки, аерозолі і т.д. можна вивчати, нанісши їх заздалегідь на підкладку: тонку плівку для дослідження в просвічуючих електронних мікроскопах, або масивну підкладку для дослідження в растрових електронних мікроскопах. Поверхневу і приповерхневу структуру масивних тіл товщиною істотно більше 1 мкм досліджують за допомогою растрових електронних мікроскопів, відбивних, дзеркальних електронних мікроскопів, іонних проекторів і електронних проекторів. Поверхнева геометрична структура масивних тіл вивчається також і методом реплік: з поверхні такого тіла знімається відбиток в вигляді тонкої плівки вуглецю, колодія і т.д., що повторює рельєф поверхні і розглядається в електронних мікроскопах, що просвічують. Звичайно заздалегідь на репліку у вакуумі напилюється під ковзаючим (малим до поверхні) кутом шар сильно розсіюючого електрони важкого металу (наприклад, Pt), що відтіняє виступи і западини геометричного рельєфу - метод декорування. Цей метод дозволяє досліджувати не тільки геометричні. структури поверхонь, але і мікрополя, обумовлені дислокаціями, скупченнями точкових дефектів, ступенями зростання кристалічних граней, доменною структурою і т.д. В цьому випадку на поверхню зразка спочатку напилюється дуже тонкий шар декоруючих частинок (атоми Au, Pt, молекули напівпровідників або діелектриків), що осідають на ділянках зосередження мікрополів, а потім знімається репліка з включеннями декоруючих частинок.

За допомогою газових мікрокамер - приставок до просвічуючих електронних мікроскопів, або растрових електронних мікроскопів - можна вивчати рідкі і газоподібні обєкти, нестійкі до дії високого вакууму, в т.ч. вологі біологічні препарати. Радіаційна дія опромінюючого електронного пучка досить велика, тому при дослідженні біологічних, напівпровідникових, полімерних і т.д. обєктів необхідно ретельно вибирати режим роботи електронного мікроскопа, що забезпечує мінімальну дозу опромінювання.

Разом з дослідженням статичних, не змінних в часі обєктів електронна мікроскопія дає можливість вивчати різні процеси в динаміці їх розвитку: зростання плівок, деформацію кристалів під дією змінного навантаження, зміну структури під впливом електронного або іонного опромінювання і т.д.

Завдяки малій інерційності електронів можна досліджувати періодичні в часі процеси, наприклад перемагнічування тонких магнітних плівок, зміна поляризації сегнетоелектриків, розповсюдження ультразвукових хвиль і т.д. Ці дослідження проводять методами стробоскопічної електронної мікроскопії: зразок «освітлюється» електронним пучком не безперервно, а імпульсами, синхронно з подачею імпульсної напруги на зразок, що забезпечує фіксацію на екрані приладу певної фази процесу точно так, як і це відбувається в світлооптичних стробоскопічних приладах. Гранична тимчасова роздільна здатність при цьому може у принципі складати близько 10-15 с для просвічуючих електронних мікроскопів.

Аморфні і квазіаморфні тіла, розміри частинок яких менше роздільної в електронних мікроскопах відстані, розсіюють електрони дифузно. Для їх дослідження використовуються прості методи амплітудної електронної мікроскопії. Наприклад, в електронних мікроскопах, що просвічують, контраст зображення, тобто перепад яскравості зображення сусідніх ділянок обєкту, в першому наближенні пропорційний перепаду товщини цих ділянок. Для розрахунку контрасту зображень кристалічних тіл і вирішення зворотної задачі - розрахунку структури обєкту по спостережуваному зображенню - притягуються методи фазової електронної мікроскопії: розвязується завдання про дифракцію електронів на кристалічній решітці. При цьому додатково враховуються непружні взаємодії електронів з обєктом: розсіювання на плазмонах, фононах і т.д.

У електронних мікроскопах, що просвічують, і растрових електронних мікроскопах високої роздільної здатності, одержують зображення окремих| молекул або атомів важких елементів; користуючись методами фазової електронної мікроскопії, відновлюють по зображеннях тривимірну структуру кристалів і біологічних макромолекул. Для вирішення подібних завдань застосовують, зокрема, методи голографії, а розрахунки проводять на ЕОМ.

Різновид фазової електронної мікроскопії - інтерференційна електронна мікроскопія, аналогічна оптичній інтерферометрії: електронний пучок розщеплюється за допомогою електронних призм, і в одному з плечей інтерферометра встановлюється зразок, що змінює фазу електронної хвилі, що проходить крізь нього. Цим методом можна виміряти, напруженість або потенціал зразка.

З допомогою лоренцової електронної мікроскопії, в якій вивчають явища, обумовлені силою Лоренца, досліджують внутрішні магнітні і електричні поля або зовнішні поля розсіювання, наприклад поля магнітних доменів в тонких плівках, сегнетоелектричних доменів, поля головок для магнітного запису інформації і т.д.

Склад обєктів досліджується методами мікродифракції, тобто електронографії локальних ділянок обєкту; методами рентгенівського і катодолюмінесцентного локального спектрального аналізу; реєструється рентгенівське випромінювання на характеристичних частотах або катодолюмінесценція, що виникають при бомбардуванні зразка сфокусованим пучком електронів (діаметр електронного «зонда» менше 1 мкм).

Крім того, вивчаються енергетичні спектри вторинних електронів, вибитих первинним електронним пучком з поверхні або з обєму зразка.

Інтенсивно розробляються методи кількісної електронної мікроскопії - точного вимірювання різних параметрів зразка або досліджуваного процесу, наприклад, вимірювання локальних електричних потенціалів, магнітних полів, мікрогеометрії поверхневого рельєфу і т.д. Електронні мікроскопи використовуються і в технологічних цілях (наприклад, для виготовлення мікросхем методом електронолітографії|).