logo
Виды теплообмена

1.3 Цилиндрические координаты

Из задач теплопроводности для тел цилиндрической формы чаще всего встречается задача о кондуктивном тепловом потоке через длинный полый цилиндр (рисунок 1.3). Известно, что температура внутренней поверхности цилиндра равна Ti, а температура наружной поверхности То. Стационарное распределение температуры в твердом теле с постоянными теплофизическими свойствами при отсутствии внутреннего тепловыделения определяется решением уравнения теплопроводности при двух граничных условиях: Т(ri)=Ti; Т(r0)=Т0. Решение для местной температуры Т(r) имеет вид

(1.8)

Выражение (1.8) записывается в безразмерной форме следующим образом:

. (1.9)

Следовательно, температура изменяется в радиальном направлении по логарифмическому закону.

Поскольку распределение температуры известно, тепловой поток вдоль радиуса цилиндра можно найти с помощью закона Фурье для цилиндрической системы координат,

(1.10)

где -- длина цилиндра.

Дифференцируя распределение температуры (1.8) и подставляя полученный результат в соотношение (1.10), получаем

(1.11)

Выражение (1.11) записано в форме закона Ома, и знаменатель представляет собой термическое сопротивление полого цилиндра:

(1.12)

Используем интегральную форму представленного термического сопротивления. Получаем

Принципы последовательного и параллельного соединения термических сопротивлений в цепь, справедливые для плоской стенки в прямоугольной системе координат, можно применить и для задачи о теплопроводности в полом цилиндре. Предположим, например, что жидкость течет в трубе, покрытой теплоизоляционным материалом (рисунок 1.4). Известно, что средняя температура жидкости равна T1, а температура внешней поверхности изоляции Т2. Характеристики материала трубы обозначены индексом 1, а изоляции--индексом 2. Конвективное термическое сопротивление жидкости определяется формулой (1.01). Конвективное термическое сопротивление жидкости нужно соединить последовательно с двумя кондуктивными термическими сопротивлениями для двух твердых материалов, поскольку тепловой поток распространяется последовательно через каждый из этих материалов.

Тепловой поток в этой задаче выражается соотношением:

(1.13)

Термическое сопротивление, входящее в соотношение (1.13), является суммой всех термических сопротивлений между двумя известными температурами. Если известны температуры Т1и Т2, то полное сопротивление должно равняться сумме только кондуктивных сопротивлений трубы и изоляции. Температура Тx при известном тепловом потоке находится из соотношения

(1.14)