logo
Виды теплообмена

1.2 Прямоугольные координаты

Стационарное одномерное распределение температуры в плоской прямоугольной стенке при отсутствии внутреннего тепловыделения описывается упрощенным уравнением теплопроводности

d2T/dx2 = 0.

Решение этого дифференциального уравнения с использованием двух постоянных интегрирования C1 и С2 имеет вид:

Т (х) = С1x + С2.

Значения этих постоянных можно найти, если заданы два граничных условия. Предположим, что в качестве этих условий заданы температуры на двух поверхностях стенки (рисунке 1.1): Т(0)=T1 и T(b)=T2. Применяя эти граничные условия, получаем следующее распределение безразмерной температуры в стенке:

(1.1)

Следовательно, температура изменяется линейно по x. Тепловой поток через стенку определяется законом Фурье:

(1.2)

Тепловой поток на единицу площади называется плотностью теплового потока и обозначается q. Для плоской стенки

Если записать соотношение (1.2) в форме закона Ома:

(1.3)

то термическое сопротивление плоской стенки выражается формулой

. (1.4)

Используя общее понятие термического сопротивления теплопроводности, (1.0), получаем аналогичное выражение

Кондуктивный тепловой поток через плоскую стенку обусловлен перепадом температур поперек стенки, и его распространению противодействует термическое сопротивление, пропорциональное толщине стенки и обратно пропорциональное коэффициенту теплопроводности стенки и площади ее поперечного сечения.

Если кондуктивный перенос тепла осуществляется через составную (многослойную) плоскую стенку, распределение температуры и тепловой поток можно найти, предполагая, что тепло течет по эквивалентной тепловой цепи, представляющей сумму термических сопротивлений, соответствующих отдельным слоям из различных материалов.

В качестве примера тепловой цепи рассмотрим плоскую стенку (индекс 1), покрытую двумя слоями различных изоляционных материалов (индексы 2 и 3). Геометрия задачи показана на рисунке 1.2. Один и тот же тепловой поток проходит последовательно через каждое термическое сопротивление, и, следовательно, тепловая цепь состоит из последовательно соединенных термических сопротивлений. Если известны свойства всех трех материалов, заданы геометрические характеристики и температуры на двух внешних поверхностях, тепловой поток можно найти с помощью соотношения, аналогичного закону Ома:

(1.5)

Поскольку тепловой поток через многослойную стенку известен, можно найти температуры на поверхностях раздела материалов, применяя закон Ома для каждого слоя. Например, температуру Тx на поверхности раздела материалов 1 и 2 можно рассчитать по формуле

(1.6)

Часто в многослойных стенках слои материалов расположены так, что тепловой поток через них течет скорее параллельно, чем последовательно. В таком случае в тепловую цепь включаются участки из параллельно соединенных термических сопротивлений.

Тепловой поток определяется по формуле

(1.7)

Отдельные термические сопротивления выражаются соотношением

.

Промежуточные температуры типа ТX можно найти из уравнения (1.6).

Предполагается, что при параллельном соединении термических сопротивлений R2 и R3 тепловой поток остается одномерным; если же сопротивления R2 и R3 заметно отличаются друг от друга, могут стать существенными двумерные эффекты.