logo
Биологическая защита реактора

1.3.3 Корпус

Корпус реактора изготовлен из углеродистой перлитной стали марок 15Х2НМФА и 15Х2НМФА_А. Из стали марки 15Х2НМФА выполнены днище, обечайки зоны патрубков, фланец корпуса. Из стали марки 15Х2НМФА_А изготовлены обечайка активной зоны и опорная обечайка.

Расшифровываются эти маркировки так:

? «15» - это содержание углерода в сотых долях процента, т.е., в данном случае, 0,15%.

? «Х2» - обозначает 2% хрома. Наличие хрома повышает ударную вязкость, уменьшает внутренние напряжения и снижает опасность образования трещин в металле.

? «Н» - никель около 1%. Содержание этого элемента повышает твёрдость стали без снижения вязкости. Понижает порог хладноломкости и увеличивает сопротивление распространению трещин в металле. Содержание 1% никеля в сплаве снижает порог хладноломкости примерно на 60 оС.

? «М» - молибден около 1 %. Содержание молибдена в сплаве снижает его склонность к отпущенной хрупкости, повышает стойкость к отпуску, уменьшаются зёрна стали, увеличивается прокаливаемость.

? «Ф» - ванадий около 1%. Этот элемент добавляют в стали , где содержатся хром, никель, марганец для измельчения зерна стали.

? «А»- это обозначение того, что сталь имеет гарантированные механические свойства;

? дополнительный индекс «-А» через дефис - это обозначение того, что сталь имеет гарантированный химический состав (в частности, содержит меньше примесей в виде серы, фосфора, меди, которые оказывают вредное воздействие на сталь, например, содержание фосфора влияет на хладноломкость стали, а содержание серы - на красноломкость).

Перлитная сталь 15Х2НМФА-А была специально разработана для блоков ВВЭР_1200. Необходимость разработки новой стали была обусловлена увеличением габаритов корпуса реактора и толщины его стенки по сравнению с предшествующим проектом ВВЭР-440. По технологическим причинам было предусмотрено введение в сталь никеля в количестве 1,0-1,4% как единственного элемента, упрочняющего данный сплав с одновременным повышением его вязкости.

По сравнению с нержавеющими сталями аустенитного класса, перлитные стали обладают рядом преимуществ - в частности, у них выше прочностные свойства и теплопроводность, они слабо подвержены радиационному распуханию, свойства перлитных сталей почти не изменяются при температуре 240_450 оС.

Несмотря на то, что аустенитные стали имеют большое достоинство - изначально низкий порог хладноломкости - около 196 оС, их недостаток - низкий предел текучести. Кроме того, при высокотемпературном облучении, при значении флюенса быстрых нейтронов около 3х1023 нейтрон/см2 (с энергией более 0,5 МэВ), аустенитные стали испытывают радиационное распухание до 3_5%. Максимально этот эффект проявляется при температуре свыше 350 оС. Добавки титана, молибдена, никеля снижают радиационное распухание в сплавах.

Однако перлитные стали имеют свойство «вымываться» теплоносителем, частицы металла попадают в теплоноситель, повышая его радиационную активность. Для защиты металла от «вымывания» внутренняя поверхность корпуса реактора и патрубков плакирована нержавеющей сталью, т.е. покрыта антикоррозионной наплавкой, толщина которой колеблется от 7 до 9 мм, эллиптическое днище корпуса реактора плакировано наплавкой толщиной 9 мм. В районах соприкосновения с крышкой, шахтой внутрикорпусной и уплотнительными прокладками наплавка утолщена. Утолщения антикоррозионной наплавки имеются также в местах приварки к корпусу всех патрубков. Антикоррозионная наплавка выполнена в два слоя: первый слой материал СВ-07Х25Н13, второй слой - СВ-04Х20Н10Г2Б. Два слоя наплавки вызваны технологией нанесения: первый слой выполняется переходными электродами по углеродистой стали корпуса реактора, второй - выполняется аустенитными электродами.

Маркировка материала антикоррозионной наплавки расшифровывается так:

? «СВ» - это общее обозначение сварочных материалов;

? первые две цифры - это содержание углерода в сотых долях процента;

? «Х19» и «Х25» - обозначает процентный состав хрома 19% и 25% соответственно;

? «Н10» и «Н13»- обозначает процентный состав никеля 10% и 13%;

? «Г2» - обозначает содержание марганца 2 %;

? «Б» - обозначает содержание ниобия около 1%.

Фланцевый разъем корпуса развит во внутреннюю часть корпуса реактора. В нижней части фланца выполнен конусный переход с толщины 292 мм на толщину 285 мм по основному металлу с антикоррозионной наплавкой.

Фланец корпуса - цельнокованый, высотой 950 мм, со стенкой переменного сечения. Фланец корпуса соединён с зоной патрубков. Зона патрубков выполнена из двух цельнокованых обечаек, одна из которых является обечайкой «горячих» патрубков, а другая - обечайкой «холодных» патрубков. В каждой обечайке зоны патрубков имеется по четыре выштампованных патрубка Ду 850 мм. Обечайки зоны патрубков изготавливаются методом горячей штамповки. Высота верхней обечайки зоны патрубков 1800 мм, высота нижней обечайки 1960 мм. Соединение фланца с обечайками корпуса реактора и обечаек между собой осуществлено сварным швом, выполненным автоматическим методом.

Фланец имеет 54 резьбовых отверстия глубиной 290 мм под шпильки главного уплотнения М 170X6. Во время перегрузки топлива при извлеченных шпильках для исключения попадания борного раствора в гнёзда шпилек устанавливаются специальные заглушки.

На горизонтальной поверхности (в плакированной части) фланца корпуса выполнены 2 кольцевые канавки под установку 5-и миллиметровых никелевых прокладок (см. рис.10). Проверка профиля канавок производится шариком диаметром 5±0, 005 мм через каждые 200 мм на длине канавки, при этом шарик должен выступать над горизонтальной поверхностью на величину 1,7±0, 2 мм.

На наружной цилиндрической поверхности фланца выполнена переходная наплавка толщиной 10 мм для приварки сильфона разделительного.

На рис.10 показан узел главного разъёма реактора ВВЭР-1200.

На внутренней поверхности фланца корпуса реактора выполнен кольцевой выступ (бурт) шириной 20 мм для установки шахты реактора.

Для контроля протечек главного уплотнения на торце фланца выполнены три резьбовых гнезда М20х1,5 с ввёрнутыми в них переходниками для присоединения трубопроводов системы контроля протечек.

Две обечайки зоны патрубков имеют каждая по 4 патрубка Ду 850 и по 2 патрубка Ду 300. Патрубки Ду 850 верхней обечайки предназначены для выхода теплоносителя, нижние - для входа. Патрубки Ду 850 выполнены методом штамповки и не требуют приварки промежуточных втулок при изготовлении корпуса реактора.

На рис.6 и на рис.7 показаны сечения корпуса соответственно А_А и Б_Б. Места сечений показаны на рис.2 «Габаритные размеры корпуса реактора» на стр.5. Сечение А_А выполнено по оси «холодных», верхнего ряда, патрубков, а сечение Б_Б по оси «горячих», нижнего ряда, патрубков. Патрубок выхода теплоносителя показан на рис.6 (поз.3). На уровнях верхнего и нижнего рядов патрубков Ду 850 выполнены по 2 патрубка под трубопроводы диаметром 351 мм на 36 мм. (поз.2 и поз.5 на рис.6). Эти патрубки имеют условный диаметр 300 мм (обозначаются «Ду 300») и предназначены для системы аварийного охлаждения активной зоны реактора (САОЗ), а точнее, для подсоединения к ёмкостям САОЗ. Патрубки САОЗ расположены попарно на одной оси на уровне верхнего и нижнего рядов патрубков Ду 850, со смещением на 60? относительно друг друга.

На торцах всех патрубков корпуса произведена наплавка и обработка присоединительных размеров в зависимости от метода сварки со стыкуемыми трубопроводами.

На уровне осей верхнего ряда патрубков Ду 850 (на расстоянии 1850 мм от торца фланца корпуса) выполнен патрубок Ду 250 (см. поз.4 на рис.6). Этот патрубок предназначен для вывода импульсных линий из корпуса реактора (так называемая «звёздочка» реактора). Устройство «звёздочки» реактора рассмотрено ниже в специальном подразделе.

На патрубках САОЗ и патрубке КИП в процессе изготовления корпуса при помощи электрошлаковой сварки устанавливаются промежуточные втулки.

В патрубках САОЗ, конструкция которых показана на рис.8 установлены тепловые рубашки, которые представляют собой свободные объёмы между корпусом и патрубками. Эти объёмы заполнены воздухом, который имеет коэффициент теплопроводности намного ниже, чем металл. Назначение тепловых рубашек - снижение температурных колебаний зон патрубков корпуса реактора при срабатывании пассивной системы САОЗ. Разница температуры подаваемой холодной воды из ёмкостей САОЗ (около 50 ?С) и температуры металла корпуса реактора может вызвать значительные температурные напряжения в металле и, как следствие, повреждение корпуса.

На наружной поверхности опорной обечайки выполнен опорный бурт с пазами для закрепления реактора на опорной ферме.

Корпус реактора закрепляется в бетонной шахте реактора посредством опорной и упорных конструкций. Опорная конструкция удерживает корпус реактора от поперечных перемещений, упорная - от продольных. Закрепление корпуса реактора рассчитано на нагрузки, возникающие при разрыве трубопровода Ду 850 и землетрясениях.

На наружной поверхности опорной обечайки под нижним рядом патрубков Ду 850 выполнен опорный бурт высотой 110 мм и диаметром 4690 мм. Он предназначен для закрепления реактора на опорном кольце. Опорный бурт выполнен также как переход от толщины стенки 285 мм к толщине 192,5 мм по основному металлу и, соответственно, 292 мм и 199,5 мм с учётом антикоррозионной наплавки, для стыковки опорной обечайки с обечайкой цилиндрической части корпуса. Длина опорной обечайки - 1140 мм.

На опорном бурте корпуса выполнено 22 выреза в продольном направлении. В проектное положение корпус реактора устанавливается опорным буртом на опорное кольцо и при помощи шпонок, которые крепятся к опорному кольцу, корпус реактора фиксируется от разворота в плане. Вырезы на опорном бурте одновременно обеспечивают допускаемый железнодорожный габарит.

Кольцо опорное предназначено для опирания корпуса на опорную ферму и передачи усилий от его веса, а также для его фиксации корпуса реактора в плане. Кольцо опорное представляет собой точёное кольцо, закрепляемое с помощью деталей крепления реактора на ферме опорной.

Для исключения образования задиров между опорным буртом корпуса и кольцом опорным установлены секторы с повышенной твёрдостью. Для фиксации корпуса от разворота в плане, в пазы опорного бурта и соответствующие им пазы кольца опорного устанавливаются шпонки. Для предотвращения опрокидывания корпуса на опорный бурт установлены накладки, закреплённые на кольце опорном с помощью шпилек. Установку корпуса по высоте производят с помощью клиновых шпонок, располагаемых под опорным кольцом. С помощью фиксаторов, привариваемых к балкам опорной фермы, производят установку кольца в плане. В прорези фиксаторов заводятся клинья, предотвращающие отрыв кольца от шпонок.

Кольцо опорное устанавливается на ферму опорную через систему клиньев и закрепляется на нем фиксаторами и клиновыми шпонками (cм. рис.9).

Упорное кольцо предназначено для предотвращения опрокидывания корпуса при разрыве трубопроводов Ду 850 мм и нагружении горизонтальными сейсмическими воздействиями и представляет собой точёное кольцо с прорезями под закладные детали (шпонки) консоли шахты и устанавливаются на буртик фланца корпуса. Посадка упорного кольца на фланец корпуса обеспечивается за счёт установки клиньев, а на шпонки бетонной консоли - за счёт костылей, подгонка которых осуществляется по месту с последующей приваркой к шпонкам.

Для установки кольца упорного на наружной поверхности фланца выполнен бурт. Цилиндрическая (нижняя) часть корпуса состоит из двух цельнокованных обечаек (так называемых обечаек цилиндрической части), имеющих толщину стенки 192,5 мм по основному металлу, длина обечаек - 2150 мм и 1540 мм.

Днище корпуса - эллиптическое с полуосями 965 мм и 2047 мм - имеет толщину стенки 215…237 мм и, соответственно, 224…246 мм с наплавкой. Толщина антикоррозионной наплавки днища составляет ~9 мм. Днища корпусов реакторов блоков №1 и №2 АЭС состоят из двух листовых заготовок, выполненных методом штамповки и соединённых электрошлаковым швом. На наружной поверхности днища корпуса в четырех местах по кольцевому поясу выполнена наружная наплавка для приварки кольцевой конструкции на период транспортировки корпуса реактора по железной дороге.

Одинаковый наружный диаметр корпуса реактора 4535 мм по высоте активной зоны позволяет проводить дистанционно ультразвуковой контроль сварных швов и материала корпуса в районе активной зоны и днища.

На внутренней поверхности корпуса в нижней части приварены восемь скоб - кронштейнов (см. рис.3 и рис.6), к которым на монтаже привариваются шпонки, сопрягаемые с пазами в шахте и обеспечивающие закрепление шахты от вибрации. Эти кронштейны называются также виброгасителями. В местах их приварки к корпусу имеются утолщения антикоррозионной наплавки. Кронштейны - виброгасители приварены к внутренней поверхности цилиндрической части корпуса реактора на расстоянии 8570 мм от торца фланца и служат для крепления нижней части внутрикорпусной шахты.

На внутренней поверхности верхней обечайки зоны патрубков приварено кольцо - разделитель потока теплоносителя. Назначение кольца - разделителя потока - разделять потоки горячего и холодного теплоносителя, охлаждающего активную зону реактора. Разделительное кольцо выполнено из стали 22К-Ш и плакировано нержавеющей сталью. Разделительное кольцо с шахтой реактора в рабочем состоянии имеет нулевой натяг, т.е. при нагревании шахта прижимается к разделительному кольцу. Это происходит из-за разности термического расширения аустенитного сплава шахты и перлитного сплава разделительного кольца. Однако протечки теплоносителя через разделительное кольцо всё же существуют и составляют около 0,1 % от общего расхода.