logo
Безредукторный синхронный электропривод запорной арматуры

Введение

Развитие и достижения естественных и технических (прикладных) наук и отраслей промышленности во многом связан с прогрессом в повышении точности технологических процессов и измерений. Современные сборочные и манипуляционные процессы требуют управление механическим движением с высокой точностью при относительно больших перемещениях, что является причиной широкого распространения следящих приводов. В зависимости от области применения следящего привода и условий работы к приводу могут предъявляться самые разнообразные требования. Общим требованием для следящего привода является способность воспроизводить входное воздействие, изменяющееся по заданному закону, в форме механического перемещения выходного вала; очевидно, что для выполнения этого требования следящий привод должен быть устойчив и обладать достаточной точностью и быстродействием. Заданным требованиям могут удовлетворять приводы, имеющие как различные схемы и методы управления, так и различные исполнительные элементы.

В современных следящих системах внедрены устройства управления и преобразования электрической энергии на основе цифровой техники, а элементы электропривода интегрированы с рабочим органом. При этом наилучшая гибкость управления механическим движением достигается за счет использования высокомоментного синхронного двигателя с само коммутацией (вентильного двигателя) и исключения из состава электропривода редуктора. Такой электропривод обычно называют безредукторным, или прямым, электроприводом с вентильным двигателем.

Термин «прямой электропривод» появился в 70-е годы ХХ в. Применительно к безредукторным электроприводам аудио- и видеоаппаратуры, в которой использовались синхронные машины малой мощности с самокоммутацией. Этот привод с прямым электромеханическим преобразованием получил распространение благодаря высокой стабильности частоты вращении, компактности и надежности, но занял довольно скромное место на рынке точных электроприводов до появления его более мощных версий. Развитие цифровой и силовой электроники, появление новых конструкций датчиков и синхронных машин позволило на другом уровне мощности и значительно точнее управлять прямым электромеханическим преобразованием. Так мощность отдельных образцов прямого электропривода возросли до сотен киловатт, а типичные значения погрешностей углового и линейного позиционирования уменьшились до единиц секунд и микрометров, что с полным правом позволило назвать такой привод прецизионным (высокоточным). Сфера применения прецизионного прямого электропривода теперь включает машиностроение, роботехнику, электронную индустрию, измерительную технику и специальные технические устройства.